Optofluidic ring resonator sensors for rapid DNT vapor detection.

We demonstrated rapid 2,4-dinitrotoluene (DNT) vapor detection at room temperature based on an optofluidic ring resonator (OFRR) sensor. With the unique on-column separation and detection features of OFRR vapor sensors, DNT can be identified from other interferences coexisting in the analyte sample mixture, which is especially useful in the detection of explosives from practical complicated vapor samples usually containing more volatile analytes. The DNT detection limit is approximately 200 pg, which corresponds to a solid phase microextraction (SPME) sampling time of only 1 second at room temperature from equilibrium headspace. A theoretical analysis was also performed to account for the experimental results. Our study shows that the OFRR vapor sensor is a promising platform for the development of a rapid, low-cost, and portable analytical device for explosive detection and monitoring.

[1]  R Chung,et al.  Rational materials design of sorbent coatings for explosives: applications with chemical sensors. , 2001, Talanta.

[2]  Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy. , 2007, Applied optics.

[3]  G. Guilbault,et al.  Detection of explosives with a coated piezoelectric quartz crystal , 1979 .

[4]  Xudong Fan,et al.  Rapid chemical-vapor sensing using optofluidic ring resonators. , 2008, Optics letters.

[5]  J. C. Kapoor,et al.  Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection , 2004 .

[6]  Suman Singh,et al.  Sensors--an effective approach for the detection of explosives. , 2007, Journal of hazardous materials.

[7]  Xudong Fan,et al.  Analysis of ring resonators for chemical vapor sensor development. , 2008, Optics express.

[8]  Vladimir S. Ilchenko,et al.  Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes , 1999 .

[9]  Hongying Zhu,et al.  Analysis of biomolecule detection with optofluidic ring resonator sensors. , 2007, Optics express.

[10]  Jürgen Hürttlen,et al.  Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. , 2007, Analytica chimica acta.

[11]  Thomas Thundat,et al.  Standoff Detection of Explosive Residues Using Photothermal Microcantilevers , 2008 .

[12]  Tao Wei,et al.  Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical. , 2008, Optics express.

[13]  K. Ward,et al.  Immobilization of cytochrome c oxidase into electrode-supported lipid bilayer membranes for in vitro cytochrome c sensing , 2006, IEEE Sensors Journal.

[14]  J. M. Bauer,et al.  Recent advancements in the gas-phase MicroChemLab , 2006, IEEE Sensors Journal.

[15]  Hongying Zhu,et al.  On-column micro gas chromatography detection with capillary-based optical ring resonators. , 2008, Analytical chemistry.

[16]  T. Swager,et al.  Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects , 1998 .

[17]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[18]  R. Sacks,et al.  High-performance, static-coated silicon microfabricated columns for gas chromatography. , 2006, Analytical chemistry.

[19]  Enrico Dalcanale,et al.  Supramolecular surface plasmon resonance (SPR) sensors for organophosphorus vapor detection , 2007 .

[20]  W. Buttner,et al.  In situ detection of trinitrotoluene and other nitrated explosives in soils , 1997 .

[21]  Hilmar Franke,et al.  Selective optical detection of aromatic vapors. , 2002, Applied optics.

[22]  William C. Trogler,et al.  Polymer sensors for nitroaromatic explosives detection , 2006 .

[23]  Joseph Wang,et al.  "One-step" simplified electrochemical sensing of TATP based on its acid treatment. , 2007, The Analyst.

[24]  L. Kreuzer,et al.  Ultralow Gas Concentration Infrared Absorption Spectroscopy , 1971 .

[25]  Joseph Wang,et al.  Electrochemical Sensing of Explosives , 2007 .

[26]  Mihai V. Putz,et al.  Introducing Spectral Structure Activity Relationship (S-SAR) Analysis. Application to Ecotoxicology , 2007, International Journal of Molecular Sciences.

[27]  D. Moore Instrumentation for trace detection of high explosives , 2004 .

[28]  Thomas Thundat,et al.  ReviewNanosensors for trace explosive detection , 2008 .

[29]  Gary A. Baker,et al.  Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis , 2005, Analytical and bioanalytical chemistry.

[30]  Victoria L McGuffin,et al.  Luminescence-based methods for sensing and detection of explosives , 2008, Analytical and bioanalytical chemistry.

[31]  T. Thundat,et al.  Detection of trinitrotoluene via deflagration on a microcantilever , 2004 .

[32]  Manu Prasanna,et al.  High-sensitivity detection of TNT , 2006, Proceedings of the National Academy of Sciences.

[33]  Xudong Fan,et al.  PDMS embedded opto-fluidic microring resonator lasers. , 2008, Optics express.