Turán number of generalized triangles

The family $\Sigma_r$ consists of all $r$-graphs with three edges $D_1,D_2,D_3$ such that $|D_1\cap D_2|=r-1$ and $D_1 \triangle D_2 \subseteq D_3$. A generalized triangle, $\mathcal{T}_r \in \Sigma_r$ is an $r$-graph on $\{1,2,\ldots,2r-1\}$ with three edges $D_1, D_2, D_3$, such that $D_1=\{1,2,\dots,r-1, r\}, D_2= \{1, 2, \dots, r-1, r+1 \}$ and $D_3 = \{r, r+1, \dots, 2r-1\}.$ Frankl and F\"{u}redi conjectured that for all $r\geq 4$, $ex(n,\Sigma_r) = ex(n,\mathcal{T}_r )$ for all sufficiently large $n$ and they also proved it for $r=3$. Later, Pikhurko showed that the conjecture holds for $r=4$. In this paper we determine $ex(n,\mathcal{T}_5)$ and $ex(n,\mathcal{T}_6)$ for sufficiently large $n$, proving the conjecture for $r=5,6$.

[1]  Zoltán Füredi,et al.  Extremal problems whose solutions are the blowups of the small witt-designs , 1989, J. Comb. Theory, Ser. A.

[2]  Sergey Norin,et al.  Tur\'an numbers of extensions , 2015 .

[3]  Miklós Simonovits,et al.  Supersaturated graphs and hypergraphs , 1983, Comb..

[4]  Béla Bollobás,et al.  Three-graphs without two triples whose symmetric difference is contained in a third , 1974, Discret. Math..

[5]  Zoltán Füredi,et al.  A new generalization of the Erdős-Ko-Rado theorem , 1983, Comb..

[6]  Oleg Pikhurko An exact Turán result for the generalized triangle , 2008, Comb..

[7]  James B. Shearer,et al.  A New Construction for Cancellative Families of Sets , 1996, Electron. J. Comb..

[8]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[9]  A. F. Sidorenko,et al.  The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs , 1987 .

[10]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[11]  László Pyber,et al.  A new generalization of the Erdös-Ko-Rado theorem , 1986, J. Comb. Theory A.

[12]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[13]  Peter Keevash,et al.  A hypergraph Turán theorem via lagrangians of intersecting families , 2013, J. Comb. Theory, Ser. A.

[14]  Dhruv Mubayi,et al.  Stability theorems for cancellative hypergraphs , 2004, J. Comb. Theory, Ser. B.

[15]  Paul Erdös,et al.  On the connection between chromatic number, maximal clique and minimal degree of a graph , 1974, Discret. Math..

[16]  Gyula O. H. Katona,et al.  Extremal Problems for Hypergraphs , 1975 .