High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators.

We demonstrate a single-drive push-pull silicon Mach-Zehnder modulator (MZM) with a π-phase-shift voltage of 3.1 V and speed up to 30 Gb/s. The on-chip insertion loss is 9 dB due to the use of a 6 mm-long phase shifter. Higher switching speed up to 40-50 Gb/s is also demonstrated in devices with shorter phase shifters which require higher drive voltages but have lower insertion losses.

[1]  E P Ippen,et al.  CMOS-compatible dual-output silicon modulator for analog signal processing. , 2008, Optics express.

[2]  Philippe Lyan,et al.  Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. , 2008, Optics express.

[3]  F Y Gardes,et al.  40 Gb/s silicon photonics modulator for TE and TM polarisations. , 2011, Optics express.

[4]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[5]  Guo-Qiang Lo,et al.  Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  D. Ahn,et al.  Electronic-photonic integrated circuits on the CMOS platform , 2006, SPIE OPTO.

[7]  Po Dong,et al.  Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[8]  M. Watts,et al.  Ultralow power silicon microdisk modulators and switches , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[9]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[10]  T. J. Sleboda,et al.  High Contrast 40gbit/s Optical Modulation in Silicon References and Links , 2022 .

[11]  M. Watts,et al.  Low-Voltage, Compact, Depletion-Mode, Silicon Mach–Zehnder Modulator , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Jun Ushida,et al.  25 GHz operation of silicon optical modulator with projection MOS structure , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[13]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[14]  Xuezhe Zheng,et al.  High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage. , 2010, Optics letters.

[15]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[16]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[17]  Kun-Yii Tu,et al.  CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[20]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[21]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[22]  Po Dong,et al.  High speed carrier-depletion modulators with 1.4V-cm V(pi)L integrated on 0.25microm silicon-on-insulator waveguides. , 2010, Optics express.

[23]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[24]  R.F. Drayton,et al.  Congratulations to the 2005 MTT-S Undergraduate/Pregraduate Scholarship Awardees! , 2006, IEEE Microwave Magazine.

[25]  Xuezhe Zheng,et al.  Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. , 2009, Optics express.

[26]  D. Thomson,et al.  50-Gb/s Silicon Optical Modulator , 2012, IEEE Photonics Technology Letters.

[27]  Ashok V. Krishnamoorthy,et al.  Computer Systems Based on Silicon Photonic Interconnects A proposed supercomputer-on-a-chip with optical interconnections between processing elements will require development of new lower-energy optical components and new circuit architectures that match electrical datapaths to complementary optical , 2009 .