Improved rigorous perturbation bounds for the LU and QR factorizations

Summary Combining the modified matrix–vector equation approach with the technique of Lyapunov majorant function and the Banach fixed point theorem, we obtain improved rigorous perturbation bounds for the LU and QR factorizations with normwise perturbation in the given matrix. Each of the improved rigorous perturbation bounds is a rigorous version of the first-order perturbation bound derived by the matrix–vector equation approach in the literature, and we present their explicit expressions. These bounds are always tighter than those given by Chang and Stehle in the paper entitled “Rigorous perturbation bounds of some matrix factorizations”. This fact is illustrated by numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  R. Bhatia Matrix factorizations and their perturbations , 1994 .

[2]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[3]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[4]  G. W. Stewarty On the Perturbation of LU, Cholesky, and QR Factorizations , 2007 .

[5]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[6]  Claude-Pierre Jeannerod,et al.  Improved Backward Error Bounds for LU and Cholesky Factorizations , 2014, SIAM J. Matrix Anal. Appl..

[7]  Ji-guang Sun On perturbation bounds for the QR factorization , 1995 .

[8]  Qiang Ye,et al.  A New Perturbation Bound for the LDU Factorization of Diagonally Dominant Matrices , 2014, SIAM J. Matrix Anal. Appl..

[9]  V. Mehrmann,et al.  Perturbation theory for matrix equations , 2003, IEEE Transactions on Automatic Control.

[10]  G. Stewart,et al.  New perturbation analyses for the Cholesky factorization , 1996 .

[11]  Ji-guang Sun Perturbation bounds for the Cholesky andQR factorizations , 1991 .

[12]  Xiao-Wen Chang,et al.  Perturbation analysis of some matrix factorizations , 1997 .

[13]  G. Stewart On the perturbation of LU and Cholesky factors , 1997 .

[14]  G. Stewart,et al.  Perturbation Analyses for the QR Factorization , 1997, SIAM J. Matrix Anal. Appl..

[15]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[16]  Xiao-Wen Chang,et al.  Perturbation Analyses for the Cholesky Downdating Problem , 1998 .

[17]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[18]  G. Stewart Perturbation Bounds for the $QR$ Factorization of a Matrix , 1977 .

[19]  Petko H. Petkov,et al.  THE METHOD OF SPLITTING OPERATORS AND LYAPUNOV MAJORANTS IN PERTURBATION LINEAR ALGEBRA AND CONTROL , 2002 .

[20]  David S. Watkins,et al.  Cholesky-like Factorizations of Skew-Symmetric Matrices , 2000 .

[21]  Xiao-Wen Chang,et al.  On the sensitivity of the LU factorization , 1998 .

[22]  A. Barrlund Perturbation bounds for theLDLH andLU decompositions , 1991 .

[23]  Damien Stehlé,et al.  Rigorous Perturbation Bounds of Some Matrix Factorizations , 2010, SIAM J. Matrix Anal. Appl..

[24]  Damien Stehlé,et al.  Perturbation Analysis of the QR factor R in the context of LLL lattice basis reduction , 2012, Math. Comput..

[25]  Froilán M. Dopico,et al.  Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices , 2011, Numerische Mathematik.

[26]  Froilán M. Dopico,et al.  Perturbation Theory for Factorizations of LU Type through Series Expansions , 2005, SIAM J. Matrix Anal. Appl..

[27]  Nicholas J. Highham A survey of condition number estimation for triangular matrices , 1987 .

[28]  Wen Li,et al.  Sensitivity analysis for the SR decomposition , 2015 .