Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries

[1]  Qiang Zhang,et al.  Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries , 2017 .

[2]  Feng Li,et al.  More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects , 2017, Advanced materials.

[3]  Qi Li,et al.  Advances in Structure and Property Optimizations of Battery Electrode Materials , 2017 .

[4]  Lin Liu,et al.  Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes , 2017 .

[5]  Rui Zhang,et al.  Columnar Lithium Metal Anodes. , 2017, Angewandte Chemie.

[6]  S. Choudhury,et al.  Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries , 2017 .

[7]  Shuhong Yu,et al.  Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance , 2017 .

[8]  Yonggang Yao,et al.  Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode , 2017, Advanced materials.

[9]  Ya‐Xia Yin,et al.  Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels , 2017, Advanced materials.

[10]  X. Lou,et al.  Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications , 2017 .

[11]  Ya‐Xia Yin,et al.  Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes , 2017, Advanced materials.

[12]  Tianyou Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[13]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[14]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[15]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[16]  Qiang Zhang,et al.  Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite‐Free Lithium Metal Anode , 2017 .

[17]  Kun Fu,et al.  Reducing Interfacial Resistance between Garnet‐Structured Solid‐State Electrolyte and Li‐Metal Anode by a Germanium Layer , 2017, Advanced materials.

[18]  Kun Fu,et al.  Garnet Solid Electrolyte Protected Li-Metal Batteries. , 2017, ACS applied materials & interfaces.

[19]  Shaofei Wang,et al.  Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects , 2017 .

[20]  Qi Li,et al.  3D Porous Cu Current Collector/Li‐Metal Composite Anode for Stable Lithium‐Metal Batteries , 2017 .

[21]  Yi Cui,et al.  Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix , 2017, Proceedings of the National Academy of Sciences.

[22]  Dingchang Lin,et al.  Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires , 2017, Nature Energy.

[23]  S. Choudhury,et al.  Nanoporous Hybrid Electrolytes for High‐Energy Batteries Based on Reactive Metal Anodes , 2017 .

[24]  Zhenan Bao,et al.  Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer. , 2017, Journal of the American Chemical Society.

[25]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[26]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[27]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[28]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[29]  Xin-Bing Cheng,et al.  Nanostructured energy materials for electrochemical energy conversion and storage: A review , 2016 .

[30]  Sen Xin,et al.  Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li–S Batteries , 2016, Advances in Materials.

[31]  Xin-Bing Cheng,et al.  Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode , 2016 .

[32]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[33]  Yi Cui,et al.  Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries , 2016 .

[34]  Yan‐Bing He,et al.  Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes , 2016, Advanced materials.

[35]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[36]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[37]  Rui Zhang,et al.  Li2S5-based ternary-salt electrolyte for robust lithium metal anode , 2016 .

[38]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[39]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[40]  Xin-Bing Cheng,et al.  Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth , 2016, Advanced materials.

[41]  Yi Cui,et al.  Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating , 2016, Proceedings of the National Academy of Sciences.

[42]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[43]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[44]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[45]  P. Chartrand,et al.  Thermodynamic description of the Ag–(Ca, Li, Zn) and Ca–(In, Li) binary systems , 2015 .

[46]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[47]  Wu Xu,et al.  Anodes for Rechargeable Lithium‐Sulfur Batteries , 2015 .

[48]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[49]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[50]  Selena M. Russell,et al.  Dendrite-free lithium deposition with self-aligned nanorod structure. , 2014, Nano letters.

[51]  M. Armand,et al.  Building better batteries , 2008, Nature.

[52]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[53]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[54]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[55]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[56]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[57]  A. Pelton The Ag−Li (Silver-Lithium) system , 1986 .

[58]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .