Transfer printing methods for flexible thin film solar cells: basic concepts and working principles.

Fabricating thin film solar cells (TFSCs) on flexible substrates will not only broaden the applications of solar cells, but also potentially reduce the installation cost. However, a critical challenge for fabricating flexible TFSCs on flexible substrates is the incompatibility issues between the thermal, mechanical, and chemical properties of these substrates and the fabrication conditions. Transfer printing methods, which use conventional substrates for the fabrication and then deliver the TFSCs onto flexible substrates, play a key role to overcome these challenges. In this review, we discuss the basic concepts and working principles of four major transfer printing methods associated with (1) transfer by sacrificial layers, (2) transfer by porous Si layer, (3) transfer by controlled crack, and (4) transfer by water-assisted thin film delamination. We also discuss the challenges and opportunities for implementing these methods for practical solar cell manufacture.

[1]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[2]  A. Blakeslee,et al.  Growth of polycrystalline GaAs for solar cell applications , 1978 .

[3]  R. M. Cannon,et al.  On the physics of moisture-induced cracking in metal-glass (copper-silica) interfaces , 2007 .

[4]  F. Krebs,et al.  Organic photovoltaics , 2013, Nanotechnology.

[5]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[6]  Zhiyong Fan,et al.  Flexible photovoltaic technologies , 2014 .

[7]  W. Appel,et al.  A New Fabrication and Assembly Process for Ultrathin Chips , 2009, IEEE Transactions on Electron Devices.

[8]  ELTRAN® (SOI-Epi Wafer™) Technology , 2002 .

[9]  W. Macdonald,et al.  Latest advances in substrates for flexible electronics , 2007 .

[10]  Chi Hwan Lee,et al.  Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-film Electronics , 2013, Scientific Reports.

[11]  M. Schulz,et al.  Improved performance of thin-film silicon solar cells on graphite substrates , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[12]  Jong-Hyun Ahn,et al.  Wafer-scale synthesis and transfer of graphene films. , 2009, Nano letters.

[13]  Rosaria Ciriminna,et al.  Flexible solar cells. , 2008, ChemSusChem.

[14]  Leathen Shi,et al.  Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics , 2013, Nature Communications.

[15]  John A. Rogers,et al.  Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs , 2010 .

[16]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[17]  Hiroshi Sakai,et al.  Production technology for amorphous silicon-based flexible solar cells , 2001 .

[18]  Jan Fyenbo,et al.  Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative , 2010 .

[19]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[20]  G. J. Bauhuis,et al.  Epitaxial lift-off GaAs solar cell from a reusable GaAs substrate , 1997 .

[21]  Sang Youn Han,et al.  Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics , 2014 .

[22]  J. Werner,et al.  Thin film solar cells on glass based on the transfer of monocrystalline Si films , 2001 .

[23]  J. A. Ott,et al.  Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies , 2011, IEEE Journal of Photovoltaics.

[24]  C. Hebling,et al.  Dry processing of mc-silicon thin-film solar cells on foreign substrates leading to 11% efficiency , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[25]  T. Moriarty,et al.  High-efficiency amorphous and "micromorph" silicon solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[26]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[27]  E. J. Haverkamp,et al.  High rate epitaxial lift-off of InGaP films from GaAs substrates , 2000 .

[28]  John A. Rogers,et al.  Materials for stretchable electronics in bioinspired and biointegrated devices , 2012 .

[29]  Elvira Fortunato,et al.  Silicon thin film solar cells on commercial tiles , 2011 .

[30]  M. Sugimoto,et al.  High efficiency GaAs thin film solar cells by peeled film technology , 1978 .

[31]  Davood Shahrjerdi,et al.  Ultralight High‐Efficiency Flexible InGaP/(In)GaAs Tandem Solar Cells on Plastic , 2013 .

[32]  Takao Yonehara,et al.  Epitaxial layer transfer by bond and etch back of porous Si , 1994 .

[33]  Paolo Vavassori,et al.  Flexible and stretchable polymers with embedded magnetic nanostructures. , 2013, Advanced materials.

[34]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[35]  A. Matsuda,et al.  Thin-Film Silicon –Growth Process and Solar Cell Application– , 2004 .

[36]  H. Schock,et al.  Increased homogeneity and open-circuit voltage of Cu(In,Ga)Se2 solar cells due to higher deposition temperature , 2011 .

[37]  Ralf B. Bergmann,et al.  Advances in monocrystalline Si thin film solar cells by layer transfer , 2002 .

[38]  J. Rogers,et al.  Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. , 2011, Nature nanotechnology.

[39]  R. Brendel,et al.  Lift-off of free-standing layers in the kerfless porous silicon process , 2013 .

[40]  P. K. Larsen,et al.  Multiple release layer study of the intrinsic lateral etch rate of the epitaxial lift-off process , 2004 .

[41]  Y. Yeh,et al.  Hydrogenated Amorphous Silicon Solar Cells on Textured Flexible Substrate Copied From a Textured Glass Substrate Template , 2011, IEEE Electron Device Letters.

[42]  J. Schermer,et al.  Epitaxial Lift‐Off for large area thin film III/V devices , 2005 .

[43]  R. Klenk,et al.  High efficiency low temperature grown Cu(In,Ga)Se2 thin film solar cells on flexible substrates using NaF precursor layers , 2011 .

[44]  Xiaolin Zheng,et al.  Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates , 2012, Scientific Reports.

[45]  Yonggang Huang,et al.  Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage , 2011, Advanced materials.

[46]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[47]  Stephen R. Forrest,et al.  Ultrathin film, high specific power InP solar cells on flexible plastic substrates , 2009 .

[48]  Yi-Ho Chen,et al.  Improved performance of amorphous Si thin-film solar cells on 430 stainless steel substrate by an electrochemical mechanical polishing process , 2013 .

[49]  Reinhold H. Dauskardt,et al.  Moisture-assisted subcritical debonding of a polymer/metal interface , 2002 .

[50]  Karsten Otte,et al.  Flexible Cu(In,Ga)Se2 thin-film solar cells for space application , 2006 .

[51]  Chi Hwan Lee,et al.  Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method , 2015, Defense + Security Symposium.

[52]  M. Meuris,et al.  18% Efficiency IBC Cell With Rear-Surface Processed on Quartz , 2013, IEEE Journal of Photovoltaics.

[53]  Yi Cui,et al.  High‐Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector , 2012 .

[54]  C. Bozler,et al.  Ultrathin, high-efficiency solar cells made from GaAs films prepared by the CLEFT Process , 1981, IEEE Electron Device Letters.

[55]  S. Adachi,et al.  Chemical Etching Characteristics of GaAs(100) Surfaces in Aqueous HF Solutions , 2000 .

[56]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[57]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[58]  R. Dauskardt,et al.  Environmentally assisted debonding of copper/barrier interfaces , 2012 .

[59]  J. Werner,et al.  50 μm thin solar cells with 17.0% efficiency , 2009 .

[60]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[61]  H. Okamoto,et al.  Amorphous Si/Polycrystalline Si Stacked Solar Cell Having More Than 12% Conversion Efficiency , 1983 .

[62]  P. K. Larsen,et al.  Thin‐film GaAs epitaxial lift‐off solar cells for space applications , 2005 .

[63]  Ingrid Repins,et al.  CIGS absorbers and processes , 2010 .

[64]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[65]  Stephen R. Forrest,et al.  Multiple growths of epitaxial lift-off solar cells from a single InP substrate , 2010 .

[66]  Kenji Yamamoto,et al.  Thin-film poly-Si solar cells on glass substrate fabricated at low temperature , 1999 .

[67]  R. Dauskardt,et al.  Fracture of nanoporous thin-film glasses , 2004, Nature materials.

[68]  E. J. Haverkamp,et al.  Wafer reuse for repeated growth of III–V solar cells , 2010 .

[69]  Jürgen H. Werner,et al.  Flexible solar cells for clothing , 2006 .