Query Anchoring Using Discriminative Query Models

Pseudo-feedback-based query models are induced from a result list of the documents most highly ranked by initial search performed for the query. Since the result list often contains much non-relevant information, query models are anchored to the query using various techniques. We present a novel {\em unsupervised} discriminative query model that can be used, by several methods proposed herein, for query anchoring of existing query models. The model is induced from the result list using a learning-to-rank approach, and constitutes a discriminative term-based representation of the initial ranking. We show that applying our methods to generative query models can improve retrieval performance.

[1]  John D. Lafferty,et al.  A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.

[2]  Tetsuya Sakai,et al.  Flexible pseudo-relevance feedback via selective sampling , 2005, TALIP.

[3]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[4]  Claudio Carpineto,et al.  An information-theoretic approach to automatic query expansion , 2001, TOIS.

[5]  Fernando Diaz,et al.  UMass at TREC 2004: Novelty and HARD , 2004, TREC.

[6]  Iadh Ounis,et al.  Studying Query Expansion Effectiveness , 2009, ECIR.

[7]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[8]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[9]  Kevyn Collins-Thompson,et al.  Reducing the risk of query expansion via robust constrained optimization , 2009, CIKM.

[10]  Iadh Ounis,et al.  Finding good feedback documents , 2009, CIKM.

[11]  W. Bruce Croft,et al.  Geometric representations for multiple documents , 2010, SIGIR.

[12]  ChengXiang Zhai,et al.  A comparative study of methods for estimating query language models with pseudo feedback , 2009, CIKM.

[13]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[14]  Oren Kurland,et al.  Query-drift prevention for robust query expansion , 2008, SIGIR '08.

[15]  W. Bruce Croft,et al.  Quary Expansion Using Local and Global Document Analysis , 1996, SIGIR Forum.

[16]  Pushpak Bhattacharyya,et al.  "A term is known by the company it keeps": On Selecting a Good Expansion Set in Pseudo-Relevance Feedback , 2009, ICTIR.

[17]  Fernando Diaz,et al.  Improving the estimation of relevance models using large external corpora , 2006, SIGIR.

[18]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[19]  Ben He,et al.  Revisiting Rocchio's Relevance Feedback Algorithm for Probabilistic Models , 2010, AIRS.

[20]  W. Bruce Croft,et al.  A general language model for information retrieval (poster abstract) , 1999, SIGIR '99.

[21]  Tao Tao,et al.  A Mixture Clustering Model for Pseudo Feedback in Information Retrieval , 2004 .

[22]  Tao Tao,et al.  Regularized estimation of mixture models for robust pseudo-relevance feedback , 2006, SIGIR.

[23]  ChengXiang Zhai,et al.  Adaptive relevance feedback in information retrieval , 2009, CIKM.

[24]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[25]  James Allan,et al.  A cluster-based resampling method for pseudo-relevance feedback , 2008, SIGIR '08.

[26]  W. Bruce Croft,et al.  Predicting document effectiveness in pseudo relevance feedback , 2011, CIKM '11.

[27]  Éric Gaussier,et al.  Information-based models for ad hoc IR , 2010, SIGIR '10.

[28]  Stephen E. Robertson,et al.  Selecting good expansion terms for pseudo-relevance feedback , 2008, SIGIR '08.

[29]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[30]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[31]  Claudio Carpineto,et al.  A Survey of Automatic Query Expansion in Information Retrieval , 2012, CSUR.

[32]  W. Bruce Croft,et al.  A general language model for information retrieval , 1999, CIKM '99.

[33]  James Allan,et al.  Automatic Query Expansion Using SMART: TREC 3 , 1994, TREC.

[34]  Éric Gaussier,et al.  A Theoretical Analysis of Pseudo-Relevance Feedback Models , 2013, ICTIR.

[35]  John D. Lafferty,et al.  Document Language Models, Query Models, and Risk Minimization for Information Retrieval , 2001, SIGIR Forum.

[36]  Chris Buckley,et al.  Improving automatic query expansion , 1998, SIGIR '98.