Extragalactic background light inferred from AEGIS galaxy-SED-type fractions

Theextragalacticbackgroundlight(EBL)isoffundamentalimportancebothforunderstanding the entire process of galaxy evolution and for"-ray astronomy, but the overall spectrum of the EBL between 0.1 and 1000µm has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. This is achieved from the observed evolution of the rest-frameK-band galaxy luminosity function up to redshift 4, combined with a determination of galaxy-SED-type fractions. These are based on fitting Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) templates to a multiwavelength sample of about 6000 galaxies in the redshift range from 0.2 to 1 from the All-wavelength Extended Groth Strip International Survey (AEGIS). The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and active galactic nucleus (AGN) galaxies in that redshift range are estimated, and two alternative extrapolations of SED types to higher redshifts are considered. This allows calculation of the evolution of the luminosity densities from the ultraviolet (UV) to the infrared (IR), the evolving star formation ratedensityoftheUniverse,theevolvingcontributiontothebolometricEBLfromthedifferent galaxy populations including AGN galaxies and the buildup of the EBL. Our EBL calculations are compared with those from a semi-analytic model, another observationally based model and observational data. The EBL uncertainties in our modelling based directly on the data are quantified, and their consequences for attenuation of very-high-energy"-rays due to pair production on the EBL are discussed. It is concluded that the EBL is well constrained from the UV to the mid-IR, but independent efforts from IR and"-ray astronomy are needed in order to reduce the uncertainties in the far-IR.

[1]  Italy Universita dell'Insubria,et al.  MAGIC observations and multiwavelength properties of the quasar 3C 279 in 2007 and 2009 , 2011, 1101.2522.

[2]  Sophia A. Khan,et al.  DETECTION OF THE COSMIC FAR-INFRARED BACKGROUND IN AKARI DEEP FIELD SOUTH , 2010, 1002.3674.

[3]  M. Doro,et al.  CTA - A Project for a New Generation of Cherenkov Telescopes , 2009, 0908.1410.

[4]  F. Aharonian High Energy Gamma Ray Astronomy , 2010 .

[5]  L. Cowie,et al.  THE RESOLVED NEAR-INFRARED EXTRAGALACTIC BACKGROUND , 2010, 1008.4216.

[6]  J. Stocke,et al.  HUBBLE/COS OBSERVATIONS OF THE Lyα FOREST TOWARD THE BL Lac OBJECT 1ES 1553+113 , 2010, 1005.2191.

[7]  P. N. Bhat,et al.  FERMI LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE , 2010, 1005.0996.

[8]  J. Kneib,et al.  ULTRA DEEP AKARI OBSERVATIONS OF ABELL 2218: RESOLVING THE 15 μm EXTRAGALACTIC BACKGROUND LIGHT , 2010, 1005.1069.

[9]  A. Cimatti,et al.  Dissecting the cosmic infra-red background with Herschel/PEP , 2010, 1005.1073.

[10]  P. Hopkins,et al.  A physical model for the origin of the diffuse cosmic infrared background , 2010, 1003.4733.

[11]  L. Maraschi,et al.  Constraining blazar distances with combined Fermi and TeV data: An empirical approach , 2010, 1003.1674.

[12]  R. Chary,et al.  New Observational Constraints and Modeling of the Infrared Background: Dust Obscured Star-Formation at z>1 and Dust in the Outer Solar System , 2010, 1003.1731.

[13]  Robert P. Johnson,et al.  THE FIRST CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE , 2010, 1002.0150.

[14]  H. Dole,et al.  A lower-limit flux for the extragalactic background light , 2010, 1001.2132.

[15]  H. Aussel,et al.  Spitzer deep and wide legacy mid- and far-infrared number counts and lower limits of cosmic infrared background , 2010, 1001.0896.

[16]  B. Garilli,et al.  Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength Spitzer observations up to z ~ 2.5 , 2009, 0910.5649.

[17]  S. Razzaque,et al.  MODELING THE EXTRAGALACTIC BACKGROUND LIGHT FROM STARS AND DUST , 2009, 0905.1115.

[18]  M. Cirasuolo,et al.  A new measurement of the evolving near-infrared galaxy luminosity function out to z≃ 4: a continuing challenge to theoretical models of galaxy formation , 2008, 0804.3471.

[19]  CEA-Saclay,et al.  Deep Spitzer 24 μm COSMOS Imaging. I. The Evolution of Luminous Dusty Galaxies—Confronting the Models , 2009, 0909.4303.

[20]  F. Prada,et al.  Modelling gamma‐ray burst observations by Fermi and MAGIC including attenuation due to diffuse background light , 2009, 0908.2830.

[21]  F. Prada,et al.  Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources , 2009, 0905.3270.

[22]  P. Hopkins,et al.  COLOR DISTRIBUTIONS, NUMBER, AND MASS DENSITIES OF MASSIVE GALAXIES AT 1.5 < z < 3: COMPARING OBSERVATIONS WITH MERGER SIMULATIONS , 2009, 0905.2411.

[23]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[24]  B. Weiner,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[25]  Simon P. Driver,et al.  THE MILLENNIUM GALAXY CATALOGUE: EXPLORING THE COLOR–CONCENTRATION BIMODALITY VIA BULGE–DISK DECOMPOSITION , 2009, 0904.3096.

[26]  Itziar Aretxaga,et al.  Over half of the far-infrared background light comes from galaxies at z ≥ 1.2 , 2009, Nature.

[27]  M. Sikora,et al.  CONSTRAINING EMISSION MODELS OF LUMINOUS BLAZAR SOURCES , 2009, 0904.1414.

[28]  I. Smail,et al.  MID-INFRARED SPECTROSCOPY OF SUBMILLIMETER GALAXIES: EXTENDED STAR FORMATION IN MASSIVE HIGH-REDSHIFT GALAXIES , 2009, 0903.4017.

[29]  Sugata Kaviraj,et al.  Galaxy Zoo: a sample of blue early-type galaxies at low redshift , 2009, 0903.3415.

[30]  T. Weekes,et al.  VERITAS OBSERVATIONS OF A VERY HIGH ENERGY γ-RAY FLARE FROM THE BLAZAR 3C 66A , 2009, 0901.4527.

[31]  Lars Hernquist,et al.  The effects of gas on morphological transformation in mergers: implications for bulge and disc demographics , 2009, 0901.4111.

[32]  D. Croton A simple model to link the properties of quasars to the properties of dark matter haloes out to high redshift , 2009, 0901.4104.

[33]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[34]  B. Weiner,et al.  DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES , 2008, 0810.4150.

[35]  H. Rix,et al.  THE RISE OF MASSIVE RED GALAXIES: THE COLOR–MAGNITUDE AND COLOR–STELLAR MASS DIAGRAMS FOR zphot ≲ 2 FROM THE MULTIWAVELENGTH SURVEY BY YALE–CHILE , 2008, 0810.3459.

[36]  A. Montero-Dorta,et al.  The SDSS DR6 luminosity functions of galaxies , 2008, 0806.4930.

[37]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[38]  M. Dickinson,et al.  BALANCING THE ENERGY BUDGET BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT INFRARED LUMINOUS GALAXIES , 2008, 0812.2927.

[39]  C. Lintott,et al.  Galaxy Zoo: Disentangling the Environmental Dependence of Morphology and Colour ⋆ , 2008, 0811.3970.

[40]  V. Villar,et al.  On the nature of the extragalactic number counts in the K-band , 2008, 0811.3104.

[41]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[42]  L. A. Antonelli,et al.  Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe? , 2008, Science.

[43]  U. Padova,et al.  Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity , 2008, 0805.1841.

[44]  Charles D. Dermer,et al.  The Hard VHE γ-Ray Emission in High-Redshift TeV Blazars: Comptonization of Cosmic Microwave Background Radiation in an Extended Jet? , 2008, 0804.3515.

[45]  E. L. Wright,et al.  A Catalog of Mid-Infrared Sources in the Extended Groth Strip , 2008, 0803.0748.

[46]  E. L. Wright,et al.  Probing the 3.6 μm CIRB with Spitzer in Three DIRBE Dark Spots , 2008, 0802.1239.

[47]  L. Costamante,et al.  Formation of hard very high energy gamma-ray spectra of blazars due to internal photon-photon absorption , 2008, 0801.3198.

[48]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[49]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[50]  L. Moustakas,et al.  The Nature of Faint 24 µ m sources Seen in Spitzer Observations of ELAIS-N1 , 2004 .

[51]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[52]  U Vivian,et al.  The faint and extremely red K-band-selected galaxy population in the DEEP2/Palomar fields , 2007, 0711.1083.

[53]  HESS Collaboration F. Aharonian,et al.  New constraints on the mid-IR EBL from the HESS discovery of VHE gamma-rays from 1ES 0229+200 , 2007, 0709.4584.

[54]  R. Bernstein,et al.  The Optical Extragalactic Background Light: Revisions and Further Comments , 2007 .

[55]  M. Baring,et al.  Blazar γ-Rays, Shock Acceleration, and the Extragalactic Background Light , 2007, 0707.4676.

[56]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[57]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. II. Formation of Red Ellipticals , 2007, 0706.1246.

[58]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[59]  B. Garilli,et al.  The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence between z = 2 and z = 1 , 2007, 0705.2438.

[60]  D. Eisenstein,et al.  The Local Galaxy 8 μm Luminosity Function , 2007, 0704.3609.

[61]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[62]  M. Raue,et al.  New limits on the density of the extragalactic background light in the optical to the far-infrared from the spectra of all known TeV blazars , 2007, astro-ph/0701694.

[63]  Marijn Franx,et al.  The Rest-Frame Optical Luminosity Functions of Galaxies at 2≤z≤3.5 , 2006, astro-ph/0610484.

[64]  M. Böttcher,et al.  Modeling the emission processes in blazars , 2006, astro-ph/0608713.

[65]  E. L. Wright,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[66]  D. Weinberg,et al.  On the evolutionary history of stars and their fossil mass and light , 2006, astro-ph/0604534.

[67]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[68]  NOAO,et al.  Evolution of the Luminosity Function, Star Formation Rate, Morphology, and Size of Star-forming Galaxies Selected at Rest-Frame 1500 and 2800 Å , 2006, astro-ph/0609016.

[69]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[70]  K. Mattila The 1-μm discontinuity in the extragalactic background light spectrum: an artefact of foreground subtraction , 2006, astro-ph/0608217.

[71]  D. Elbaz,et al.  Spitzer 70 Micron Source Counts in GOODS-North , 2006, astro-ph/0606676.

[72]  B. Peterson,et al.  Near‐infrared and optical luminosity functions from the 6dF Galaxy Survey , 2006, astro-ph/0603609.

[73]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[74]  D. Physics,et al.  Hard TeV spectra of blazars and the constraints to the infrared intergalactic background , 2006, astro-ph/0603030.

[75]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[76]  M. Blanton Galaxies in SDSS and DEEP2: A Quiet Life on the Blue Sequence? , 2005, astro-ph/0512127.

[77]  France.,et al.  The ISO 170 μm luminosity function of galaxies , 2005, astro-ph/0511691.

[78]  M. Malkan,et al.  Intergalactic Photon Spectra from the Far-IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High-Energy Gamma Rays , 2005, astro-ph/0510449.

[79]  A. R. Bazer-Bachi,et al.  A low level of extragalactic background light as revealed by γ-rays from blazars , 2005, Nature.

[80]  Guilaine Lagache,et al.  DUSTY INFRARED GALAXIES: Sources of the Cosmic Infrared Background , 2005, astro-ph/0507298.

[81]  C. Steidel,et al.  A Census of Optical and Near-Infrared Selected Star-forming and Passively Evolving Galaxies at Redshift z ~ 2 , 2005, astro-ph/0507264.

[82]  A. Connolly,et al.  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[83]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[84]  L. Moustakas,et al.  The Evolution of the Optical and Near-Infrared Galaxy Luminosity Functions and Luminosity Densities to z ~ 2 , 2005, astro-ph/0505297.

[85]  R. Scalzo,et al.  Observations of the BL Lacertae Object 3C 66A with STACEE , 2005, astro-ph/0504515.

[86]  S. Serjeant,et al.  The local submillimetre luminosity functions and predictions from Spitzer to Herschel , 2004, astro-ph/0409498.

[87]  B. Garilli,et al.  The VIMOS-VLT deep survey - Evolution of the galaxy luminosity function up to z = 2 in first epoch data , 2004, astro-ph/0409134.

[88]  E. Dwek,et al.  Simultaneous Constraints on the Spectrum of the Extragalactic Background Light and the Intrinsic TeV Spectra of Markarian 421, Markarian 501, and H1426+428 , 2004, astro-ph/0406565.

[89]  H. Murakami,et al.  Infrared Telescope in Space Observations of the Near-Infrared Extragalactic Background Light , 2004, astro-ph/0411593.

[90]  A. Szalay,et al.  The Ultraviolet Galaxy Luminosity Function in the Local Universe from GALEX Data , 2004, astro-ph/0411364.

[91]  E. al.,et al.  Number Counts of GALEX Sources in Far-Ultraviolet (1530 Å) and Near-Ultraviolet (2310 Å) Bands , 2005 .

[92]  -INAF,et al.  Active galactic nuclei in the mid-IR: evolution and contribution to the cosmic infrared background , 2004, astro-ph/0601355.

[93]  P. R. M. Eisenhardt,et al.  The Nature of Faint 24 Micron Sources Seen in Spitzer Space Telescope Observations of ELAIS-N1 , 2004 .

[94]  Orsay,et al.  The 24 Micron Source Counts in Deep Spitzer Space Telescope Surveys , 2004, astro-ph/0406035.

[95]  E. L. Wright,et al.  Number Counts at 3 μm < λ < 10 μm from the Spitzer Space Telescope , 2004, astro-ph/0405595.

[96]  E. Lorenz,et al.  Status of the 17 m ∅ MAGIC telescope , 2004 .

[97]  S. Noll,et al.  The evolution of the luminosity functions in the FORS Deep Field from low to high redshift: I. The blue bands , 2004, astro-ph/0403535.

[98]  J. Newman,et al.  Evolution and Color Dependence of the Galaxy Angular Correlation Function: 350,000 Galaxies in 5 Square Degrees , 2004, astro-ph/0403423.

[99]  Italy.,et al.  Connecting the cosmic infrared background to the X-ray background , 2004, astro-ph/0403381.

[100]  J. Hinton,et al.  The status of the HESS project , 2004, astro-ph/0403052.

[101]  S. Serjeant,et al.  The Local sub-mm luminosity functions and predictions from Spitzer to Herschel , 2004 .

[102]  Chisato Yamauchi,et al.  The morphology–density relation in the Sloan Digital Sky Survey , 2003, astro-ph/0312043.

[103]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[104]  Cea,et al.  An ISOCAM survey through gravitationally lensing galaxy clusters. I. Source lists and source counts , 2003, astro-ph/0305400.

[105]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[106]  Stephen S. Eikenberry,et al.  A Wide-Field Infrared Camera for the Palomar 200-inch Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[107]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[108]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[109]  R. Nichol,et al.  The Broadband Optical Properties of Galaxies with Redshifts 0.02 < z < 0.22 , 2002, astro-ph/0209479.

[110]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[111]  F. Combes,et al.  SF2A-2004: Semaine de l'Astrophysique Francaise , 2005 .

[112]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[113]  K. Mannheim,et al.  Implications of cosmological gamma-ray absorption - I. Evolution of the metagalactic radiation field , 2002, astro-ph/0202104.

[114]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: The bJ-band galaxy luminosity function and survey selection function , 2001, astro-ph/0111011.

[115]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[116]  S. Glashow,et al.  New Tests of Lorentz Invariance Following from Observations of the Highest Energy Cosmic Gamma Rays , 2002 .

[117]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[118]  N. S. F. Center,et al.  THE COSMIC INFRARED BACKGROUND: Measurements and Implications ⁄ , 2001, astro-ph/0105539.

[119]  Astronomy,et al.  Infrared Emission from the Radio Supernebula in NGC 5253: A Proto-Globular Cluster? , 2001, astro-ph/0103101.

[120]  C. Beichman,et al.  The Cosmic Infrared Background at 1.25 and 2.2 Microns Using DIRBE and 2MASS: A Contribution Not Due to Galaxies? , 2001, astro-ph/0103078.

[121]  S. Glashow,et al.  New tests of Lorentz invariance following from observations of the highest energy cosmic γ-rays , 2001, astro-ph/0102226.

[122]  et al,et al.  Reanalysis of the high energy cutoff of the 1997 Mkn 501 TeV energy spectrum , 2000, astro-ph/0011483.

[123]  D. Schlegel,et al.  Detection of a Far IR Excess with DIRBE at 60 and 100 Microns , 2001 .

[124]  C. Kochanek,et al.  The K-Band Galaxy Luminosity Function , 2000, astro-ph/0011456.

[125]  H. Ferguson,et al.  Ultraviolet Galaxy Counts from Space Telescope Imaging Spectrograph Observations of the Hubble Deep Fields , 2000 .

[126]  J. Brinchmann,et al.  The Mass Assembly and Star Formation Characteristics of Field Galaxies of Known Morphology , 2000, The Astrophysical journal.

[127]  David J. Schlegel,et al.  Detection of a Far-Infrared Excess with DIRBE at 60 and 100 Microns , 2000, astro-ph/0004175.

[128]  L. Pozzetti,et al.  Deep galaxy counts, extragalactic background light and the stellar baryon budget , 1999, astro-ph/9907315.

[129]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[130]  E. L. Wright,et al.  Tentative Detection of the Cosmic Infrared Background at 2.2 and 3.5 Microns Using Ground-based and Space-based Observations , 1999, astro-ph/9909428.

[131]  Neil Gehrels,et al.  GLAST: The Next-Generation High-Energy Gamma-Ray Astronomy Mission , 1999 .

[132]  R. Somerville,et al.  Probing galaxy formation with TeV gamma ray absorption , 1998, astro-ph/9812399.

[133]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[134]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[135]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[136]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[137]  E.,et al.  THE COBE DIFFUSE INFRARED BACKGROUND EXPERIMENT SEARCH FOR THE COSMIC INFRARED BACKGROUND . I . LIMITS AND DETECTIONS , 1998 .

[138]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[139]  M. Malkan,et al.  An Empirically Based Calculation of the Extragalactic Infrared Background , 1997, astro-ph/9710072.

[140]  Vladimir Vassiliev,et al.  VERITAS: the Very Energetic Radiation Imaging Telescope Array System , 1997 .

[141]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[142]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[143]  E. Phinney,et al.  Constraints on the Extragalactic Background Light from Gamma-Ray Observations of High-Redshift Quasars , 1996 .

[144]  P. Peebles Principles of Physical Cosmology , 1993 .

[145]  G. Neugebauer,et al.  The properties of infrared galaxies in the local universe , 1991 .

[146]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[147]  R. Gould,et al.  Opacity of the Universe to High-Energy Photons , 1966 .

[148]  E. Salpeter The Luminosity function and stellar evolution , 1955 .