Antiaromatic compounds: a brief history, applications, and the many ways they escape antiaromaticity

[1]  I. Alabugin,et al.  Antiaromaticity Gain Activates Tropone and Nonbenzenoid Aromatics as Normal-Electron-Demand Diels-Alder Dienes. , 2020, Organic letters.

[2]  H. Ottosson,et al.  Electron-driven proton transfer relieves excited-state antiaromaticity in photoexcited DNA base pairs† , 2020, Chemical science.

[3]  Chia-Hua Wu,et al.  How does excited-state antiaromaticity affect the acidity strengths of photoacids? , 2020, Chemical communications.

[4]  Wenping Hu,et al.  Stable Olympicenyl Radicals and Their π-Dimers. , 2020, Journal of the American Chemical Society.

[5]  I. Fdez. Galván,et al.  Impact of Excited-State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes , 2020, Journal of the American Chemical Society.

[6]  V. Subramaniam cyclobutadiene , 2020, Catalysis from A to Z.

[7]  H. Ottosson,et al.  Strategies for Design of Potential Singlet Fission Chromophores Utilizing a Combination of Ground-State and Excited-State Aromaticity Rules , 2020, Journal of the American Chemical Society.

[8]  J. Wu,et al.  Antiaromaticity gain increases the potential for n-type charge transport in hydrogen-bonded π-conjugated cores. , 2020, Chemical communications.

[9]  M. Hariharan,et al.  Through-space aromatic character in excimers. , 2019, Chemical communications.

[10]  M. Shatruk,et al.  Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal “Defect” and Helicene Strain for Cyclizations , 2019, Angewandte Chemie.

[11]  Tanya K. Ronson,et al.  An antiaromatic-walled nanospace , 2019, Nature.

[12]  Brian J. Levandowski,et al.  Hyperconjugative Antiaromaticity Activates 4H-Pyrazoles as Inverse-Electron-Demand Diels-Alder Dienes. , 2019, Organic letters.

[13]  H. Ottosson,et al.  Excited-state proton transfer relieves antiaromaticity in molecules , 2019, Proceedings of the National Academy of Sciences.

[14]  Dongho Kim,et al.  Three-dimensional aromaticity in an antiaromatic cyclophane , 2019, Nature Communications.

[15]  Kealan J. Fallon,et al.  Exploiting excited-state aromaticity to design highly stable singlet fission materials. , 2019, Journal of the American Chemical Society.

[16]  Yan Xia,et al.  Dinaphthobenzo[1,2:4,5]dicyclobutadiene: Antiaromatic and Orthogonally Tunable Electronics and Packing. , 2019, Angewandte Chemie.

[17]  Xinhui Lu,et al.  Crystal Engineering of Biphenylene-Containing Acenes for High-Mobility Organic Semiconductors. , 2019, Journal of the American Chemical Society.

[18]  Israel Fernández,et al.  Aromaticity can enhance the reactivity of P-donor/borole frustrated Lewis pairs. , 2019, Chemical communications.

[19]  T. Herng,et al.  Diazuleno-s-indacene Diradicaloids: Syntheses, Properties, and Local (anti)Aromaticity Shift from Neutral to Dicationic State. , 2018, Angewandte Chemie.

[20]  Yan Xia,et al.  Synthesis of Cyclobutadienoid-Fused Phenazines with Strongly Modulated Degrees of Antiaromaticity. , 2018, Organic letters.

[21]  Tullimilli Y Gopalakrishna,et al.  From open-shell singlet diradicaloids to polyradicaloids. , 2018, Chemical communications.

[22]  Y. Hayashi,et al.  Structural Monitoring of the Onset of Excited-State Aromaticity in a Liquid Crystal Phase. , 2017, Journal of the American Chemical Society.

[23]  T. Takui,et al.  Synthesis and Characterization of Dibenzo[a,f]pentalene: Harmonization of the Antiaromatic and Singlet Biradical Character. , 2017, Journal of the American Chemical Society.

[24]  M. Nakamoto,et al.  Spectroscopic Observation of the Triplet Diradical State of a Cyclobutadiene. , 2017, Angewandte Chemie.

[25]  S. Yamaguchi,et al.  Facile Synthesis of Polycyclic Pentalenes with Enhanced Hückel Antiaromaticity. , 2017, Angewandte Chemie.

[26]  M. Haley,et al.  Explorations of the Indenofluorenes and Expanded Quinoidal Analogues. , 2017, Accounts of chemical research.

[27]  Brian J. Levandowski,et al.  Hyperconjugative, Secondary Orbital, Electrostatic, and Steric Effects on the Reactivities and Endo and Exo Stereoselectivities of Cyclopropene Diels-Alder Reactions. , 2016, Journal of the American Chemical Society.

[28]  L. Zakharov,et al.  Modulating Paratropicity Strength in Diareno-Fused Antiaromatics. , 2016, Journal of the American Chemical Society.

[29]  S. Irle,et al.  Stacked antiaromatic porphyrins , 2016, Nature Communications.

[30]  K. Kovnir,et al.  Orbital Crossings Activated through Electron Injection: Opening Communication between Orthogonal Orbitals in Anionic C1-C5 Cyclizations of Enediynes. , 2016, Journal of the American Chemical Society.

[31]  K. Kanai,et al.  Stable Delocalized Singlet Biradical Hydrocarbon for Organic Field‐Effect Transistors , 2016 .

[32]  M. Nascimento,et al.  The Nature of the Singlet and Triplet States of Cyclobutadiene as Revealed by Quantum Interference. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Sayantan Mondal,et al.  The Missing C1-C5 Cycloaromatization Reaction: Triplet State Antiaromaticity Relief and Self-Terminating Photorelease of Formaldehyde for Synthesis of Fulvenes from Enynes. , 2015, Journal of the American Chemical Society.

[34]  H. Ottosson,et al.  The excited state antiaromatic benzene ring: a molecular Mr Hyde? , 2015, Chemical Society reviews.

[35]  Adaickapillai Mahendran,et al.  Single molecule conductance of aromatic, nonaromatic, and partially antiaromatic systems , 2015 .

[36]  Jong Min Lim,et al.  Reversal of Hückel (anti)aromaticity in the lowest triplet states of hexaphyrins and spectroscopic evidence for Baird's rule , 2015, Nature Chemistry.

[37]  Christian Dahlstrand,et al.  Excited state aromaticity and antiaromaticity: opportunities for photophysical and photochemical rationalizations. , 2014, Chemical reviews.

[38]  Haixing Li,et al.  Aromaticity decreases single-molecule junction conductance. , 2014, Journal of the American Chemical Society.

[39]  S. Irle,et al.  A π-conjugated system with flexibility and rigidity that shows environment-dependent RGB luminescence. , 2013, Journal of the American Chemical Society.

[40]  P. Schleyer,et al.  Substituent effects on "hyperconjugative" aromaticity and antiaromaticity in planar cyclopolyenes. , 2013, Organic letters.

[41]  M. Shatruk,et al.  Reinvestigation of "Single-crystal X-ray structure of 1,3-dimethylcyclobutadiene". , 2013, Chemistry.

[42]  H. Ottosson Organic photochemistry: Exciting excited-state aromaticity. , 2012, Nature chemistry.

[43]  Francesco A. Evangelista,et al.  Is cyclobutadiene really highly destabilized by antiaromaticity? , 2012, Chemical communications.

[44]  Severin T. Schneebeli,et al.  Structure–property relationships in molecular wires , 2011 .

[45]  F. Feixas,et al.  Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds. , 2011, Physical chemistry chemical physics : PCCP.

[46]  H. Ottosson,et al.  Influence of excited state aromaticity in the lowest excited singlet states of fulvene derivatives. , 2011, Physical chemistry chemical physics : PCCP.

[47]  David Scheschkewitz,et al.  Comment on “Single-Crystal X-ray Structure of 1,3-Dimethylcyclobutadiene by Confinement in a Crystalline Matrix” , 2010, Science.

[48]  M. Shatruk,et al.  Comment on “Single-Crystal X-ray Structure of 1,3-Dimethylcyclobutadiene by Confinement in a Crystalline Matrix” , 2010, Science.

[49]  T. Kawase,et al.  Dinaphthopentalenes: pentalene derivatives for organic thin-film transistors. , 2010, Angewandte Chemie.

[50]  Mihail Barboiu,et al.  Comment on “Single-Crystal X-ray Structure of 1,3-Dimethylcyclobutadiene by Confinement in a Crystalline Matrix” , 2010, Science.

[51]  J. Aihara Origin of stacked-ring aromaticity. , 2009, The journal of physical chemistry. A.

[52]  A. Osuka,et al.  Möbius aromaticity and antiaromaticity in expanded porphyrins. , 2009, Nature chemistry.

[53]  P. Fowler,et al.  Stacked-ring aromaticity: an orbital model. , 2008, Organic letters.

[54]  Jong Min Lim,et al.  Protonation-triggered conformational changes to möbius aromatic [32]heptaphyrins(1.1.1.1.1.1.1). , 2008, Angewandte Chemie.

[55]  R. Breslow,et al.  Charge transport in nanoscale aromatic and antiaromatic systems , 2008 .

[56]  P. Karadakov Ground- and excited-state aromaticity and antiaromaticity in benzene and cyclobutadiene. , 2008, The journal of physical chemistry. A.

[57]  N. Jux The porphyrin twist: Hückel and Möbius aromaticity. , 2008, Angewandte Chemie.

[58]  T. Kupfer,et al.  Structural evidence for antiaromaticity in free boroles. , 2008, Angewandte Chemie.

[59]  Jong Kang Park,et al.  Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity. , 2008, Angewandte Chemie.

[60]  M. Stępień,et al.  Expanded porphyrin with a split personality: a Hückel-Möbius aromaticity switch. , 2007, Angewandte Chemie.

[61]  P. Schleyer,et al.  Are antiaromatic rings stacked face-to-face aromatic? , 2007, Organic letters.

[62]  T. Bally Cyclobutadiene: the antiaromatic paradigm? , 2006, Angewandte Chemie.

[63]  Hans Lischka,et al.  Automerization reaction of cyclobutadiene and its barrier height: an ab initio benchmark multireference average-quadratic coupled cluster study. , 2006, Journal of Chemical Physics.

[64]  Z. Tian,et al.  The heat of formation of cyclobutadiene. , 2006, Angewandte Chemie.

[65]  Shuichi Suzuki,et al.  Aromaticity on the pancake-bonded dimer of neutral phenalenyl radical as studied by MS and NMR spectroscopies and NICS analysis. , 2006, Journal of the American Chemical Society.

[66]  P. Schleyer,et al.  Investigation of a putative mobius aromatic hydrocarbon. The effect of benzannelation on mobius [4n]annulene aromaticity. , 2005, Journal of the American Chemical Society.

[67]  H. Ottosson,et al.  Fulvenes, fulvalenes, and azulene: are they aromatic chameleons? , 2004, Journal of the American Chemical Society.

[68]  Anna I Krylov,et al.  Equation-of-motion spin-flip coupled-cluster model with single and double substitutions: Theory and application to cyclobutadiene. , 2004, The Journal of chemical physics.

[69]  R. Herges,et al.  Synthesis of a Möbius aromatic hydrocarbon , 2003, Nature.

[70]  M. Manoharan,et al.  Radical-anionic cyclizations of enediynes: remarkable effects of benzannelation and remote substituents on cyclorearomatization reactions. , 2003, Journal of the American Chemical Society.

[71]  P. Schleyer,et al.  Monocyclic (CH)9+ -A Heilbronner Möbius Aromatic System Revealed. , 1998, Angewandte Chemie.

[72]  K. Houk,et al.  The Dimerization of Cyclobutadiene. An ab Initio CASSCF Theoretical Study , 1996 .

[73]  J. Murray,et al.  Anomalous stabilizing and destabilizing effects in some cyclic π-electron systems , 1993 .

[74]  D. Cram,et al.  The Taming of Cyclobutadiene , 1991 .

[75]  E. Krogh,et al.  Enhanced formation of 8.pi.(4n) conjugated cyclic carbanions in the excited state: first example of photochemical C-H bond heterolysis in photoexcited suberene , 1988 .

[76]  G. Giusti,et al.  Photosensitized oxidation of 3,6-dimethyloctane , 1988 .

[77]  E. Krogh,et al.  Evidence for the generation of aromatic cationic systems in the excited state. Photochemical solvolysis of fluoren-9-ol , 1985 .

[78]  K. Hafner,et al.  Model calculations of the interaction of two parallel antiaromatic 4n pi-electron systems. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Paul von Ragué Schleyer,et al.  Aromaticity in three dimensions. 4. Influence of orbital compatibility on the geometry and stability of capped annulene rings with six interstitial electrons , 1982 .

[80]  G. Maier,et al.  Structure of Tetra-tert-butylcyclobutadiene†‡ , 1980 .

[81]  J. Aihara Aromaticity-Based Theory of Pericyclic Reactions , 1978 .

[82]  H. Rodewald,et al.  The Structure of a Rectangular Cyclobutadiene , 1974 .

[83]  G. Maier The Cyclobutadiene Problem , 1974 .

[84]  H. Hogeveen,et al.  CHEMISTRY AND SPECTROSCOPY IN STRONGLY ACIDIC SOLUTIONS .40. (CCH3)62+, AN UNUSUAL DICATION , 1974 .

[85]  K. Hafner,et al.  Concerning Pentalene, 2‐Methylpentalene, and 1,3‐Dimethylpentalene , 1973 .

[86]  H. Hogeveen,et al.  Direct observation of a remarkably stable dication of unusual structure: (CCH3)62⊕. , 1973 .

[87]  O. Chapman,et al.  Photochemical transformations. XLVIII. Cyclobutadiene , 1973 .

[88]  S. Masamune,et al.  Nature of the (CH)5+ species. I. Solvolysis of 1,5-dimethyltricyclo[2.1.0.02,5]pent-3-yl benzoate , 1972 .

[89]  Horst Kimling,et al.  Synthesis of a Cyclobutadiene Stabilized by Steric Effects , 1972 .

[90]  N. Colin Baird,et al.  Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3.pi..pi.* state of cyclic hydrocarbons , 1972 .

[91]  R. Hoffmann,et al.  Bond-stretch isomerism and polytopal rearrangements in (CH)5+, (CH)5-, and (CH)4CO , 1972 .

[92]  A. Krantz,et al.  Matrix preparation of cyclobutadiene , 1972 .

[93]  E. Yakali,et al.  Generation and thermal bond relocation of the cyclononatetraenyl cation , 1972 .

[94]  E. Yakali,et al.  Photochemical behavior of the stereoisomeric 9-chloro-cis-bicyclo[6.1.0]nona-2,4,6-trienes. Synthesis of 9-chloro-cis,cis,cis,cis-1,3,5,7-cyclononatetraene , 1971 .

[95]  P. Schleyer,et al.  Thermal bicyclo[6.1.0]nonatrienyl chloride-dihydroindenyl chloride rearrangement , 1971 .

[96]  J. L. Fry,et al.  CARBONIUM IONS. XII. REACTION PATHS IN THE ISOMERIZATION OF BROMOPROPANES WITH ALUMINUM BROMIDE. , 1970 .

[97]  E. Wasserman,et al.  Stable Triplet States of Some Cyclopentadienyl Cations , 1967 .

[98]  L. Watts,et al.  Cyclobutadiene- and Benzocyclobutadiene-Iron Tricarbonyl Complexes1 , 1965 .

[99]  E. Wasserman,et al.  Pentachlorocyclopentadienyl Cation, a Ground-State Triplet , 1964 .

[100]  E. Heilbronner,et al.  Hűckel molecular orbitals of Mőbius-type conformations of annulenes , 1964 .

[101]  W. A. Yager A Stable Triplet State of Pentaphenylcyclopentadienyl Cation , 1963 .

[102]  E. Fischer,et al.  The Aromatic Reactivity of Ferrocene, Ruthenocene and Osmocene1,2 , 1960 .

[103]  G. Schröder,et al.  Ein Derivat des Cyclobutadiens , 1959 .

[104]  Y. Meinwald,et al.  Synthesis of Some Conjugated Cyclobutane Polyolefins and their 1,2-Cycloaddition to Tetracyanoethylene1,2 , 1959 .

[105]  John D. Roberts,et al.  Small-Ring Compounds. XI. Some New Cyclobutane, Cyclobutene and Cyclobutanone Derivatives Derived from the Adduct of Phenylacetylene with 1,1-Difluoro-2,2-dichloroethylene , 1953 .

[106]  J. W. Eastes,et al.  A Study of the Products Obtained by the Reducing Action of Metals upon Salts in Liquid Ammonia Solutions. VII. The Reduction of Complex Nickel Cyanides: Mono-valent Nickel , 1942 .

[107]  E. Hückel,et al.  Quantentheoretische Beiträge zum Benzolproblem , 1931 .

[108]  J. Thiele Zur Kenntniss der ungesättigten Verbindungen. Theorie der ungesättigten und aromatischen Verbindungen , 1899 .

[109]  A. Kekulé,et al.  Ueber einige Condensationsproducte des Aldehyds , 1872 .