Characterization of a highly variable eutherian microRNA gene.

Mouse microRNAs (miRNAs) miR-290-miR295 are encoded by a cluster of partially homologous pre-miRNA hairpins and are likely to be functionally important in embryonic stem (ES) cells and preimplantation embryos. We present evidence that a spliced, capped, and polyadenylated primary transcript spans this entire Early Embryonic microRNA Cluster (EEmiRC). Partial Drosha processing yields additional large nuclear RNA intermediates. A conserved promoter element containing a TATA-box directs EEmiRC transcription. Sequence analysis shows that the EEmiRC transcription unit is remarkably variable and can only be identified bioinformatically in placental (eutherian) mammals. Consistent with eutherian-specific function, EEmiRC is expressed in trophoblastic stem (TS) cells. When analyzing evolutionary and functional relationships, the organization of the entire miRNA loci should be considered in addition to the mature miRNA sequences. Application of this concept suggests that EEmiRC is a recently acquired rapidly evolving gene important for eutherian development.

[1]  D. Higgins,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Clustal: Blockina Blockinpackage Blockinfor Blockinperforming Multiple Blockinsequence Blockinalignment Blockinon Blockina Minicomputer Article Blockin Blockinin Blockin , 2022 .

[2]  W. Pearson Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. , 1991, Genomics.

[3]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[4]  Sean R. Eddy,et al.  Maximum Discrimination Hidden Markov Models of Sequence Consensus , 1995, J. Comput. Biol..

[5]  J. Rossant,et al.  Promotion of trophoblast stem cell proliferation by FGF4. , 1998, Science.

[6]  Michael Zuker,et al.  Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide , 1999 .

[7]  M. Carmell,et al.  Posttranscriptional Gene Silencing in Plants , 2006 .

[8]  R. Jaenisch,et al.  A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. , 2000, Molecular cell.

[9]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[10]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[11]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[12]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[13]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[14]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[15]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[16]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[17]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[18]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[19]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[20]  A. Caudy,et al.  Fragile X-related protein and VIG associate with the RNA interference machinery. , 2002, Genes & development.

[21]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[22]  Hajime Sakai,et al.  Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016238. , 2003, The Plant Cell Online.

[23]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[24]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[25]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[26]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[27]  P. Sharp,et al.  Embryonic stem cell-specific MicroRNAs. , 2003, Developmental cell.

[28]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[29]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[30]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[31]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[32]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[33]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[34]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[35]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[36]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[37]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[38]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[39]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[40]  John Bracht,et al.  Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. , 2004, RNA.

[41]  P. Zamore,et al.  A Protein Sensor for siRNA Asymmetry , 2004, Science.

[42]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[43]  S. Moon,et al.  Human embryonic stem cells express a unique set of microRNAs. , 2004, Developmental biology.

[44]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[45]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[46]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[47]  Peter F Stadler,et al.  Molecular evolution of a microRNA cluster. , 2004, Journal of molecular biology.

[48]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[49]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.