A Reverse Converter and Sign Detectors for an Extended RNS Five-Moduli Set

This paper deals with the extended five moduli set <inline-formula> <tex-math notation="LaTeX">$ \left({{2^{2n+p}, 2^{n}-1, 2^{n}+1, 2^{n}-2^{\frac {n+1}{2}}+1, 2^{n}+2^{\frac {n+1}{2}}+1}}\right)$ </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is a positive odd integer and <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> is nonnegative integer such that <inline-formula> <tex-math notation="LaTeX">$p\leq \frac {n-5}{2}$ </tex-math></inline-formula>. The paper proposes an efficient residue-to-binary converter along with a converter-based sign detector for this extended set. The paper also presents a residue-to-residue transformer that transforms the same five-moduli set to the three-moduli set <inline-formula> <tex-math notation="LaTeX">$(2^{2n+p}, 2^{2n}-1, 2^{2n}+1)$ </tex-math></inline-formula>. Such a transformer enables the five-moduli set to utilize components that are (or will be) designed for the three-moduli set such as sign detectors.

[1]  Chip-Hong Chang,et al.  A Residue-to-Binary Converter for a New Five-Moduli Set , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  A. Hiasat,et al.  Residue-to-binary arithmetic converter for the moduli set (2/sup k/, 2/sup k/-1, 2/sup k-1/-1) , 1998 .

[3]  S. Andraos,et al.  A new efficient memoryless residue to binary converter , 1988 .

[4]  A. S. Molahosseini,et al.  Efficient reverse converter designs for the new 4-moduli sets {2n - 1, 2n, 2n + 1, 22n+1 - 1} and {2n - 1, 2n + 1, 22n, 22n + 1} based on new CRTs , 2010 .

[5]  Ahmad A. Hiasat,et al.  A Suggestion for a Fast Residue Multiplier for a Family of Moduli of the Form (2n - (2p [plusmn] 1)) , 2004, Comput. J..

[6]  Chip-Hong Chang,et al.  Area-efficient and fast sign detection for four-moduli set RNS {2n −1,2n, 2n +1,22n +1} , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[7]  P. V. Ananda Mohan,et al.  RNS-to-Binary Converters for Two Four-Moduli Sets $\{2^{n}-1,2^{n},2^{n}+1,2^{{n}+1}-1\}$ and $\{2^{n}-1,2^{n},2^{n}+1,2^{{n}+1}+1\}$ , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Leonel Sousa,et al.  Efficient Method for Designing Modulo {2n ± k} Multipliers , 2014, J. Circuits Syst. Comput..

[9]  Wei Wang,et al.  A note on "A high-speed residue-to-binary converter for three-moduli (2/sup k/ 2/sup k/ - 1, 2/sup k-1/ - 1) RNS and a scheme for its VLSI implementation" , 2000 .

[10]  Ahmad A. Hiasat,et al.  A Sign Detector for a Group of Three-Moduli Sets , 2016, IEEE Transactions on Computers.

[11]  M.N.S. Swamy,et al.  A Note on "A High-Speed Residue-to-Binary Converter for Three-Moduli RNS and a Scheme for Its VLSI Implementation" , 2000 .

[12]  P. V. Ananda Mohan,et al.  RNS-To-Binary Converter for a New Three-Moduli Set $\{2^{{n}+1}-1,2^{n},2^{n}-1\}$ , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Hong Shen,et al.  Adder based residue to binary number converters for (2n-1, 2n, 2n+1) , 2002, IEEE Trans. Signal Process..

[14]  Stanislaw J. Piestrak Design of Residue Generators and Multioperand Modular Adders Using Carry-Save Adders , 1994, IEEE Trans. Computers.

[15]  Leonel Sousa,et al.  Elliptic Curve point multiplication on GPUs , 2010, ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors.

[16]  Michael A. Soderstrand,et al.  Residue number system arithmetic: modern applications in digital signal processing , 1986 .

[17]  Ahmad A. Hiasat,et al.  VLSI implementation of new arithmetic residue to binary decoders , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  Richard I. Tanaka,et al.  Residue arithmetic and its applications to computer technology , 1967 .

[19]  Ricardo Chaves,et al.  Method to Design General RNS Reverse Converters for Extended Moduli Sets , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  Giorgos Dimitrakopoulos,et al.  New architectures for modulo 2N - 1 adders , 2005, 2005 12th IEEE International Conference on Electronics, Circuits and Systems.

[21]  Stanislaw J. Piestrak,et al.  Design of Reverse Converters for General RNS Moduli Sets $\{ 2^{k}, 2^{n}-1, 2^{n}+1, 2^{n+1}-1 \}$ and $\{ 2^{k}, 2^{n}-1, 2^{n}+1, 2^{n-1}-1 \}$ ($n$ even) , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Ricardo Chaves,et al.  {2/sup n/ + 1, 2/sup n+k/, 2/sup n/ - 1} : a new RNS moduli set extension , 2004, Euromicro Symposium on Digital System Design, 2004. DSD 2004..

[23]  Thanos Stouraitis,et al.  Efficient RNS Implementation of Elliptic Curve Point Multiplication Over ${\rm GF}(p)$ , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[24]  Reto Zimmermann,et al.  Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).

[25]  Ghassem Jaberipur,et al.  A New Residue Number System with 5-Moduli Set: {22q, 2q±3, 2q±1} , 2015, Comput. J..

[26]  L. Sousa,et al.  {\text{\{ 2}}^{\text{n}} + 1,2^{n + k} ,2^n - 1\}: A New RNS Moduli Set Extension , 2004 .

[27]  Omid Kavehei,et al.  Efficient Reverse Converter Designs for the New 4-Moduli Sets $\{2^{n} -1, 2^{n}, 2^{n} +1, 2^{2n + 1}-1\}$ and $\{2^{n} -1, 2^{n} +1, 2^{2n}, 2^{2n} +1\}$ Based on New CRTs , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Stanislaw J. Piestrak,et al.  Design of Reverse Converters for the New RNS Moduli Set $\{2^{n}+1,2^{n}-1,2^{n},2^{n-1}+1\}$ ($n$ odd) , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Haridimos T. Vergos,et al.  Diminished-One Modulo 2n+1 Adder Design , 2002, IEEE Trans. Computers.

[30]  Ricardo Chaves,et al.  RNS Arithmetic Units for Modulo {2^n+-k} , 2012, 2012 15th Euromicro Conference on Digital System Design.

[31]  Yuke Wang,et al.  A study of the residue-to-binary converters for the three-moduli sets , 2003 .

[32]  Partha Garai,et al.  Design Of A Reconfigurable DSP Processor With Bit Efficient Residue Number System , 2012, VLSIC 2012.

[33]  Alexander Skavantzos,et al.  An efficient residue to weighted converter for a new residue number system , 1998, Proceedings of the 8th Great Lakes Symposium on VLSI (Cat. No.98TB100222).

[34]  L. Sousa,et al.  MRC-Based RNS Reverse Converters for the Four-Moduli Sets $\{2^{n} + 1, 2^{n} - 1, 2^{n}, 2^{2n + 1} - 1\}$ and $ \{2^{n} + 1, 2^{n} - 1, 2^{2n}, 2^{2n + 1} - 1\}$ , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[35]  Ricardo Chaves,et al.  RNS Reverse Converters for Moduli Sets With Dynamic Ranges up to $(8n+1)$ -bit , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.