Comparative study of standard space and real space analysis of quantitative MR brain data

To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space.

[1]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[2]  Andrew Simmons,et al.  Structural magnetic resonance imaging predictors of responsiveness to cognitive behaviour therapy in psychosis , 2009, Schizophrenia Research.

[3]  Karl J. Friston,et al.  Voxel-based morphometry of the human brain: Methods and applications , 2005 .

[4]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[5]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[6]  Sanjeev Chawla,et al.  Magnetization transfer and T2 quantitation in normal appearing cortical gray matter and white matter adjacent to focal abnormality in patients with traumatic brain injury. , 2003, Magnetic resonance imaging.

[7]  Babak A. Ardekani,et al.  Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans , 2005, Journal of Neuroscience Methods.

[8]  P. E. Morris,et al.  Water proton T1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[9]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[10]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[11]  John Duncan,et al.  Implementation and application of a brain template for multiple volumes of interest , 2002, Human brain mapping.

[12]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[13]  J. Reiber,et al.  Ventricular shape biomarkers for Alzheimer's disease in clinical MR images , 2008, Magnetic resonance in medicine.

[14]  John Ashburner,et al.  Computational anatomy with the SPM software. , 2009, Magnetic resonance imaging.

[15]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[16]  Olaf B. Paulson,et al.  MR-based automatic delineation of volumes of interest in human brain PET images using probability maps , 2005, NeuroImage.

[17]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[18]  David H. Miller,et al.  Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation , 2008, Magnetic resonance in medicine.

[19]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[20]  Daniel Rueckert,et al.  Automated morphological analysis of magnetic resonance brain imaging using spectral analysis , 2008, NeuroImage.