Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains

[1]  Eric P. Crist,et al.  A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Wenbo Xu,et al.  Modelling gross primary production in the Heihe river basin and uncertainty analysis , 2012 .

[3]  A. Goldstein,et al.  Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation , 2005 .

[4]  Jianping Guo,et al.  Reprint of: Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[5]  Nicholas C. Coops,et al.  Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand , 2007 .

[6]  Peter E. Thornton,et al.  Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests , 2002 .

[7]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[8]  Piermaria Corona,et al.  Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems , 2009 .

[9]  Luciano Vieira Dutra,et al.  Carbon budget estimation in Central Amazonia: Successional forest modeling from remote sensing data , 2005 .

[10]  F. Veroustraete,et al.  Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data , 2002 .

[11]  X. Lee,et al.  Long‐term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada , 1999 .

[12]  Qing Xiao,et al.  Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design , 2013 .

[13]  Sarah Parks,et al.  An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data , 2010 .

[14]  Dirk Pflugmacher,et al.  Monitoring coniferous forest biomass change using a Landsat trajectory-based approach , 2013 .

[15]  A. Luckman,et al.  Texture in airborne SAR imagery of tropical forest and its relationship to forest regeneration stage , 1997 .

[16]  Hua Yuan,et al.  A soil particle-size distribution dataset for regional land and climate modelling in China , 2012 .

[17]  Mingguo Ma,et al.  Coupling of a biogeochemical model with a simultaneous heat and water model and its evaluation at an alpine meadow site , 2014, Environmental Earth Sciences.

[18]  Yanhong Tang,et al.  Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau , 2008 .

[19]  Markus Erhard,et al.  Analyzing the Ecosystem Carbon Dynamics of Four European Coniferous Forests Using a Biogeochemistry Model , 2003, Ecosystems.

[20]  Z. Niu,et al.  Watershed Allied Telemetry Experimental Research , 2009 .

[21]  Nan Zhongren,et al.  Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China , 2005 .

[22]  S. Running,et al.  FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. , 1991, Tree physiology.

[23]  J E Smith,et al.  Identifying Influences on Model Uncertainty: An Application Using a Forest Carbon Budget Model , 2001, Environmental management.

[24]  Marco Bindi,et al.  Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements , 2005 .

[25]  M. Nilsson,et al.  Regional forest biomass and wood volume estimation using satellite data and ancillary data , 1999 .

[26]  Mingguo Ma,et al.  Validation of MODIS-GPP product at 10 flux sites in northern China , 2013 .

[27]  Xin,et al.  Validation of WRF model on simulating forcing data for Heihe River Basin , 2011 .

[28]  T. Palosuo,et al.  Uncertainty of forest carbon stock changes – implications to the total uncertainty of GHG inventory of Finland , 2007 .

[29]  Lin Song,et al.  Random generalized linear model: a highly accurate and interpretable ensemble predictor , 2013, BMC Bioinformatics.

[30]  P. G. Jarvis,et al.  Productivity of temperate de-ciduous and evergreen forests , 1983 .

[31]  Erxue Chen,et al.  Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data , 2014 .

[32]  S. Goward,et al.  Global Primary Production: A Remote Sensing Approach , 1995 .

[33]  Peter E. Thornton,et al.  Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls , 2000 .

[34]  R. Duncan AN EVALUATION OF ERRORS IN TREE AGE ESTIMATES BASED ON INCREMENT CORES IN KAHIKATEA (DACRYCARPUS DACRYDIOIDES). , 1989 .

[35]  Jindi Wang,et al.  Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Mark C. Vanderwel,et al.  Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States , 2013, Global change biology.

[37]  U. Schurr,et al.  Changing the way we think about global change research: scaling up in experimental ecosystem science , 2004 .

[38]  Yongwon Kim,et al.  Response of the carbon cycle in sub-arctic black spruce forests to climate change: Reduction of a carbon sink related to the sensitivity of heterotrophic respiration , 2009 .

[39]  Marco Moriondo,et al.  Integration of remote sensing and ecosystem modelling techniques to estimate forest net carbon uptake , 2008 .

[40]  J. Heikkinen,et al.  Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery , 2007 .

[41]  Donald A. Adjeroh,et al.  Random KNN feature selection - a fast and stable alternative to Random Forests , 2011, BMC Bioinformatics.

[42]  S. Solberg,et al.  Monitoring spruce volume and biomass with InSAR data from TanDEM-X , 2013 .

[43]  P. Atkinson,et al.  Relating SAR image texture to the biomass of regenerating tropical forests , 2005 .

[44]  P. Gonzalez,et al.  Tropical rainforest biodiversity and aboveground carbon changes and uncertainties in the Selva Central, Peru , 2014 .

[45]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .

[46]  Xuhui Lee,et al.  On micrometeorological observations of surface-air exchange over tall vegetation , 1998 .

[47]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[48]  D. King,et al.  Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987–2010 , 2014 .

[49]  Joanne C. White,et al.  Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization , 2007 .

[50]  R. Houghton,et al.  Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon , 2000, Nature.

[51]  S. Goetz,et al.  Remote sensing of net primary production in boreal forest stands , 1996 .

[52]  S. Running,et al.  A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes , 1988 .

[53]  Huanhua Peng,et al.  Soil CO2 efflux along an elevation gradient in Qinghai spruce forests in the upper reaches of the Heihe River, northwest China , 2014, Environmental Earth Sciences.

[54]  R. Holmes Computer-Assisted Quality Control in Tree-Ring Dating and Measurement , 1983 .

[55]  V. Klemas,et al.  Growth response and spectral characteristics of a short Spartina alterniflora salt marsh irrigated with freshwater and sewage effluent , 1983 .

[56]  Beniamino Gioli,et al.  Integration of ground and satellite data to model Mediterranean forest processes , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[57]  Marco Bindi,et al.  Application of BIOME-BGC to simulate Mediterranean forest processes , 2007 .

[58]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[59]  M. Lefsky,et al.  Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California , 2010 .

[60]  Di Long,et al.  Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010 , 2015 .

[61]  W. Cohen,et al.  Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. , 1995 .

[62]  M. Heurich,et al.  Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests , 2008 .

[63]  Ernst Linder,et al.  Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations , 2005 .

[64]  Barbara Koch,et al.  Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands , 2012 .

[65]  M. Bauer,et al.  Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method , 2001 .

[66]  S. Sohi Agriculture, forestry and other land use , 2014 .

[67]  Laurence Hubert-Moy,et al.  Evaluation of SPOT imagery for the estimation of grassland biomass , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[68]  W. Cohen,et al.  Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery , 1992 .

[69]  Nicolas Baghdadi,et al.  Coupling potential of ICESat/GLAS and SRTM for the discrimination of forest landscape types in French Guiana , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[70]  D. Mahapatra,et al.  Analyzing Training Information From Random Forests for Improved Image Segmentation , 2014, IEEE Transactions on Image Processing.

[71]  Piermaria Corona,et al.  Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems , 2008 .