Bone remodeling in response to in vivo fatigue microdamage.

[1]  Stephen A. Wainwright,et al.  Mechanical Design in Organisms , 2020 .

[2]  L. Lanyon,et al.  Regulation of bone formation by applied dynamic loads. , 1984, The Journal of bone and joint surgery. American volume.

[3]  L. Lanyon,et al.  Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. , 1982, The Journal of experimental biology.

[4]  F. G. Evans,et al.  H.R. Lissner Award Lecture - Bone and Bones , 1982 .

[5]  V. Frankel,et al.  Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. , 1981, Acta orthopaedica Scandinavica.

[6]  W. Hylander,et al.  Effect of bone strain on cortical bone structure in macaques (Macaca mulatta) , 1981, Journal of morphology.

[7]  A. White,et al.  A biomechanical comparison of the effects of constant and cyclic compression on fracture healing in rabbit long bones. , 1979, Acta orthopaedica Scandinavica.

[8]  A. Goodship,et al.  Functional adaptation of bone to increased stress. An experimental study. , 1979, The Journal of bone and joint surgery. American volume.

[9]  W. Hylander The functional significance of primate mandibular form , 1979, Journal of morphology.

[10]  L E Lanyon,et al.  The influence of mechanical function on the development and remodeling of the tibia. An experimental study in sheep. , 1979, The Journal of bone and joint surgery. American volume.

[11]  W. W. Daniel Applied Nonparametric Statistics , 1978 .

[12]  J F Lafferty,et al.  Fatigue characteristics of posterior elements of vertebrae. , 1977, The Journal of bone and joint surgery. American volume.

[13]  L. Lanyon,et al.  Mechanical function as an influence on the structure and form of bone. , 1976, The Journal of bone and joint surgery. British volume.

[14]  F. G. Evans,et al.  Mechanical properties and histology of cortical bone from younger and older men , 1976, The Anatomical record.

[15]  Cartwright Ag,et al.  The effect of histological variation on the tensile strength of cortical bone. , 1975 .

[16]  Subrata Saha,et al.  Instrumented tensile-impact tests of bone , 1974 .

[17]  A. Burstein,et al.  The elastic modulus for bone. , 1974, Journal of biomechanics.

[18]  A Simkin,et al.  Fracture formation in differing collagen fiber pattern of compact bone. , 1974, Journal of biomechanics.

[19]  F. Cooke,et al.  The fracture mechanics of bone--another look at composite modeling. , 1973, Journal of biomedical materials research.

[20]  A Chamay,et al.  Mechanical influences in bone remodeling. Experimental research on Wolff's law. , 1972, Journal of biomechanics.

[21]  M. Lišková,et al.  Reaction of bone to mechanical stimuli. 2. Periosteal and endosteal reaction of tibial diaphysis in rabbit to intermittent loading. , 1971, Folia morphologica.

[22]  K. Piekarski,et al.  Fracture of Bone , 1970 .

[23]  A Chamay,et al.  Mechanical and morphological aspects of experimental overload and fatigue in bone. , 1970, Journal of biomechanics.

[24]  A. Ascenzi,et al.  The tensile properties of single osteons , 1967, The Anatomical record.

[25]  William Bonfield,et al.  Deformation and Fracture of Bone , 1966 .

[26]  James H. McElhaney,et al.  Dynamic response of biological materials. , 1965 .

[27]  John D. Currey,et al.  Stress Concentrations in Bone , 1962 .

[28]  W. T. Dempster,et al.  Tensile strength of bone along and across the grain. , 1961, Journal of applied physiology.

[29]  D. Burr,et al.  A hypothetical mechanism for the stimulation of osteonal remodelling by fatigue damage. , 1982, Journal of biomechanics.

[30]  D. Carter,et al.  In vivo intracortical loading histories calculated from bone strain telemetry , 1982 .

[31]  L. Lanyon,et al.  The influence of strain rate on adaptive bone remodelling. , 1982, Journal of biomechanics.

[32]  A. Goodship,et al.  Mechanically adaptive bone remodelling. , 1982, Journal of biomechanics.

[33]  V. Frankel,et al.  Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics. , 1981, Journal of biomechanics.

[34]  V. Frankel,et al.  Measurement and analysis of invivo bone strains on the canine radius and ulna , 1980 .

[35]  C. R. Howlett,et al.  The response of living bone to controlled time-varying loading: method and preliminary results. , 1979, Journal of biomechanics.

[36]  L E Lanyon,et al.  The relationship of functional stress and strain to the processes of bone remodelling. An experimental study on the sheep radius. , 1979, Journal of biomechanics.

[37]  W C Hayes,et al.  Compact bone fatigue damage: a microscopic examination. , 1977, Clinical orthopaedics and related research.

[38]  W C Hayes,et al.  Compact bone fatigue damage--I. Residual strength and stiffness. , 1977, Journal of biomechanics.

[39]  W C Hayes,et al.  Fatigue life of compact bone--II. Effects of microstructure and density. , 1976, Journal of biomechanics.

[40]  W C Hayes,et al.  Fatigue life of compact bone--I. Effects of stress amplitude, temperature and density. , 1976, Journal of biomechanics.

[41]  J. Currey,et al.  The effects of strain rate, reconstruction and mineral content on some mechanical properties of bovine bone. , 1975, Journal of biomechanics.

[42]  J. Hert,et al.  Reaction of bone to mechanical stimuli , 1972 .

[43]  P. Kenny,et al.  Fracture toughness an examination of the concept in predicting the failure of materials , 1968 .

[44]  J. Hert,et al.  Comparison of the mechanical properties of both the primary and haversian bone tissue. , 1965, Acta anatomica.

[45]  J. Currey,et al.  Differences in the tensile strength of bone of different histological types. , 1959, Journal of anatomy.

[46]  J. Weinmann,et al.  Bone and bones , 1955 .