The fossilized birth–death process for coherent calibration of divergence-time estimates

Significance Divergence time estimation on an absolute timescale requires external calibration information, which typically is derived from the fossil record. The common practice in Bayesian divergence time estimation involves applying calibration densities to individual nodes. Often, these priors are arbitrarily chosen and specified yet have an excessive impact on estimates of absolute time. We introduce the fossilized birth–death process—a fossil calibration method that unifies extinct and extant species with a single macroevolutionary model, eliminating the need for ad hoc calibration priors. Compared with common calibration density approaches, Bayesian inference under this mechanistic model yields more accurate node age estimates while providing a coherent measure of statistical uncertainty. Furthermore, unlike calibration densities, our model accommodates all the reliable fossils for a given phylogenetic dataset. Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene.

[1]  Alexei J. Drummond,et al.  Calibrated Birth–Death Phylogenetic Time-Tree Priors for Bayesian Inference , 2013, Systematic biology.

[2]  Tanja Stadler,et al.  Dating phylogenies with sequentially sampled tips. , 2013, Systematic biology.

[3]  P. Wagner,et al.  Modelling distributions of fossil sampling rates over time, space and taxa: assessment and implications for macroevolutionary studies , 2013 .

[4]  Derrick J. Zwickl,et al.  A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses , 2013, PloS one.

[5]  Alexandros Stamatakis,et al.  Boosting the Performance of Bayesian Divergence Time Estimation with the Phylogenetic Likelihood Library , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.

[6]  Robert S. Sansom,et al.  Atlas of vertebrate decay: a visual and taphonomic guide to fossil interpretation , 2013 .

[7]  S. Cardinal,et al.  Bees diversified in the age of eudicots , 2013, Proceedings of the Royal Society B: Biological Sciences.

[8]  Tanja Stadler,et al.  Uncovering epidemiological dynamics in heterogeneous host populations using phylogenetic methods , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[10]  David Bryant,et al.  Simulating gene trees under the multispecies coalescent and time-dependent migration , 2013, BMC Evolutionary Biology.

[11]  Ziheng Yang,et al.  The unbearable uncertainty of Bayesian divergence time estimation , 2012 .

[12]  G. Didier,et al.  The reconstructed evolutionary process with the fossil record. , 2012, Journal of theoretical biology.

[13]  S. Bonhoeffer,et al.  Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV) , 2012, Proceedings of the National Academy of Sciences.

[14]  L. Harmon,et al.  INTEGRATING FOSSILS WITH MOLECULAR PHYLOGENIES IMPROVES INFERENCE OF TRAIT EVOLUTION , 2012, Evolution; international journal of organic evolution.

[15]  D. Alba,et al.  Kretzoiarctos gen. nov., the Oldest Member of the Giant Panda Clade , 2012, PloS one.

[16]  T. Heath,et al.  A hierarchical Bayesian model for calibrating estimates of species divergence times. , 2012, Systematic biology.

[17]  Masami Hasegawa,et al.  Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny , 2012, Proceedings of the Royal Society B: Biological Sciences.

[18]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[19]  John P Huelsenbeck,et al.  A dirichlet process prior for estimating lineage-specific substitution rates. , 2012, Molecular biology and evolution.

[20]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[21]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[22]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[23]  Alexei J. Drummond,et al.  Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation , 2011, Systematic biology.

[24]  Beda Joos,et al.  Estimating the basic reproductive number from viral sequence data. , 2012, Molecular biology and evolution.

[25]  A. Smith,et al.  Taxonomic structure of the fossil record is shaped by sampling bias. , 2012, Systematic biology.

[26]  Ziheng Yang,et al.  Exploring uncertainty in the calibration of the molecular clock , 2012, Biology Letters.

[27]  J. Morales,et al.  Una nueva especie de Agriarctos (Ailuropodinae, Ursidae, Carnivora) en la localidad de Nombrevilla 2 (Zaragoza, España) , 2011 .

[28]  Bridget S. Wade,et al.  A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data , 2011, Biological reviews of the Cambridge Philosophical Society.

[29]  Tanja Stadler,et al.  Simulating trees with a fixed number of extant species. , 2011, Systematic biology.

[30]  A. Antonelli,et al.  Mass extinction, gradual cooling, or rapid radiation? Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum (Chloranthaceae) using empirical and simulated approaches. , 2011, Systematic biology.

[31]  Tanja Stadler,et al.  Inferring speciation and extinction rates under different sampling schemes. , 2011, Molecular biology and evolution.

[32]  J. Oliver,et al.  Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. , 2011, Systematic biology.

[33]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[34]  Ullasa Kodandaramaiah,et al.  Tectonic calibrations in molecular dating , 2011 .

[35]  S. Tavaré,et al.  Dating primate divergences through an integrated analysis of palaeontological and molecular data. , 2011, Systematic biology.

[36]  T. Stadler Sampling-through-time in birth-death trees. , 2010, Journal of theoretical biology.

[37]  M. Suchard,et al.  Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.

[38]  Charles R Marshall,et al.  Diversity dynamics: molecular phylogenies need the fossil record. , 2010, Trends in ecology & evolution.

[39]  Tanja Stadler,et al.  Sampling trees from evolutionary models. , 2010, Systematic biology.

[40]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[41]  T. Fulton,et al.  Multiple fossil calibrations, nuclear loci and mitochondrial genomes provide new insight into biogeography and divergence timing for true seals (Phocidae, Pinnipedia) , 2010 .

[42]  T. Stadler On incomplete sampling under birth-death models and connections to the sampling-based coalescent. , 2009, Journal of theoretical biology.

[43]  S. Ho,et al.  Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.

[44]  M. Hutchinson,et al.  Phylogenetic uncertainty and molecular clock calibrations: a case study of legless lizards (Pygopodidae, Gekkota). , 2009, Molecular phylogenetics and evolution.

[45]  S. Ho,et al.  Accommodating the effect of ancient DNA damage on inferences of demographic histories. , 2009, Molecular biology and evolution.

[46]  Frederick Albert Matsen IV,et al.  A method for investigating relative timing information on phylogenetic trees. , 2009, Systematic biology.

[47]  Svante Pääbo,et al.  Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary , 2008, BMC Evolutionary Biology.

[48]  C. Marshall A Simple Method for Bracketing Absolute Divergence Times on Molecular Phylogenies Using Multiple Fossil Calibration Points , 2008, The American Naturalist.

[49]  M. Gandolfo,et al.  Selection of Fossils for Calibration of Molecular Dating Models1 , 2008 .

[50]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[51]  Junhyong Kim,et al.  Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. , 2008, Systematic biology.

[52]  D. Bryant,et al.  A general comparison of relaxed molecular clock models. , 2007, Molecular biology and evolution.

[53]  Marc A Suchard,et al.  A nonparametric method for accommodating and testing across-site rate variation. , 2007, Systematic biology.

[54]  S. Ho Calibrating molecular estimates of substitution rates and divergence times in birds , 2007 .

[55]  Jinyi Liu,et al.  The first skull of the earliest giant panda , 2007, Proceedings of the National Academy of Sciences.

[56]  Ziheng Yang,et al.  Inferring speciation times under an episodic molecular clock. , 2007, Systematic biology.

[57]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[58]  J. W. Valentine,et al.  Assessing the fidelity of the fossil record by using marine bivalves. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[60]  D. Bryant,et al.  Continuous and tractable models for the variation of evolutionary rates. , 2005, Mathematical biosciences.

[61]  B. Rannala,et al.  Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.

[62]  Ziheng Yang,et al.  Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. , 2006, Molecular biology and evolution.

[63]  Ziheng Yang,et al.  Branch-length prior influences Bayesian posterior probability of phylogeny. , 2005, Systematic biology.

[64]  K. Holsinger,et al.  Polytomies and Bayesian phylogenetic inference. , 2005, Systematic biology.

[65]  H. Kishino,et al.  Maximum likelihood inference of protein phylogeny and the origin of chloroplasts , 1990, Journal of Molecular Evolution.

[66]  H. Kishino,et al.  Estimation of Divergence Times from Molecular Sequence Data , 2005 .

[67]  D. Geraads,et al.  Late Miocene large mammals from Yulafli, Thrace region, Turkey, and their biogeographic implications , 2005 .

[68]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[69]  Beth Shapiro,et al.  Rise and Fall of the Beringian Steppe Bison , 2004, Science.

[70]  M. Sanderson,et al.  Molecular evidence on plant divergence times. , 2004, American journal of botany.

[71]  D. Graur,et al.  Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. , 2004, Trends in genetics : TIG.

[72]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[73]  Ziheng Yang,et al.  Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene Loci and calibration points, with application to a radiation of cute-looking mouse lemur species. , 2003, Systematic biology.

[74]  A. Rodrigo,et al.  Measurably evolving populations , 2003 .

[75]  Ziheng Yang,et al.  Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. , 2003, Genetics.

[76]  Michael J Benton,et al.  Dating the Tree of Life , 2003, Science.

[77]  G. Baryshnikov Late Miocene Indarctos punjabiensis atticus (Carnivora, Ursidae) in Ukraine with survey of Indarctos records from the former USSR , 2003 .

[78]  A. Purvis,et al.  Phylogeny imbalance: taxonomic level matters. , 2002, Systematic biology.

[79]  Stéphane Aris-Brosou,et al.  Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. , 2002, Systematic biology.

[80]  Effrey,et al.  Divergence Time and Evolutionary Rate Estimation with Multilocus Data , 2002 .

[81]  M. Foote Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis , 2001, Paleobiology.

[82]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[83]  A. Smith,et al.  Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[84]  W. Bruno,et al.  Performance of a divergence time estimation method under a probabilistic model of rate evolution. , 2001, Molecular biology and evolution.

[85]  P. Taberlet,et al.  Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages , 2001, Current Biology.

[86]  J. Morales,et al.  Indarctos (Ursidae, Mammalia) from the Spanish Turolian (Upper Miocene) , 2001 .

[87]  Z. Yang,et al.  Estimation of primate speciation dates using local molecular clocks. , 2000, Molecular biology and evolution.

[88]  P. Wagner Likelihood tests of hypothesized durations: determining and accommodating biasing factors , 2000, Paleobiology.

[89]  J. Huelsenbeck,et al.  A compound poisson process for relaxing the molecular clock. , 2000, Genetics.

[90]  R. Weiss,et al.  The Uncertainty in the True End Point of a Fossil's Stratigraphic Range When Stratigraphic Sections Are Sampled Discretely , 1999 .

[91]  J. Sepkoski,et al.  Absolute measures of the completeness of the fossil record , 1999, Nature.

[92]  J. Alroy The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. , 1999, Systematic biology.

[93]  R. Tedford,et al.  PHYLOGENETIC SYSTEMATICSOF THE BOROPHAGINAE(CARNIVORA: CANIDAE) , 1999 .

[94]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[95]  L. Ginsburg,et al.  Les Hemicyoninae (Ursidae, Carnivora, Mammalia) et les formes apparentées du Miocène inférieur et moyen d'Europe occidentale , 1998 .

[96]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[97]  Andrew Rambaut,et al.  Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..

[98]  Charles R. Marshall,et al.  Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons , 1997, Paleobiology.

[99]  M. Foote On the probability of ancestors in the fossil record , 1996, Paleobiology.

[100]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[101]  Giuseppe Fusco,et al.  A new method for evaluating the shape of large phylogenies , 1995 .

[102]  L. Ginsburg,et al.  Zaragocyon daamsi n. gen. sp. nov., Ursidae primitif du Miocène inférieur d'Espagne , 1995 .

[103]  C. Marshall Confidence intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons , 1994, Paleobiology.

[104]  Sean Nee,et al.  PHYLOGENIES WITHOUT FOSSILS , 1994, Evolution; international journal of organic evolution.

[105]  R M May,et al.  The reconstructed evolutionary process. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[106]  Xiao-Mei Wang Phylogenetic systematics of the Hesperocyoninae (Carnivora, Canidae). Bulletin of the AMNH ; no. 221 , 1994 .

[107]  Z. Yang,et al.  Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.

[108]  A. Morgan,et al.  Arctodus simus from the Alaskan Arctic Slope , 1993 .

[109]  Charles R. Marshall,et al.  Confidence intervals on stratigraphic ranges , 1990, Paleobiology.

[110]  H. Kishino,et al.  Estimation of branching dates among primates by molecular clocks of nuclear DNA which slowed down in Hominoidea , 1989 .

[111]  Virginia Held,et al.  Birth and Death , 1989, Ethics.

[112]  Jiankang Zhang,et al.  ON THE GENERALIZED BIRTH AND DEATH PROCESSES (II)––THE STAY TIME, LIMIT THEOREM AND ERGODIC PROPERTY , 1986 .

[113]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[114]  E. Heizmann,et al.  Prosansanosmilus peregrinus ein neuer machairodontider Felide aus dem Miocän Deutschlands und Frankreichs , 1980 .

[115]  P. Andrews,et al.  New Miocene locality in Turkey with evidence on the origin of Ramapithecus and Sivapithecus , 1977, Nature.

[116]  Joseph Felsenstein,et al.  Maximum Likelihood and Minimum-Steps Methods for Estimating Evolutionary Trees from Data on Discrete Characters , 1973 .

[117]  T. Guensburg,et al.  Arctoid genetic characters as related to the genus Parictis , 1972 .

[118]  P. Bjork The Carnivora of the Hagerman Local Fauna (Late Pliocene) of Southwestern Idaho , 1970 .

[119]  D. Kendall On the Generalized "Birth-and-Death" Process , 1948 .

[120]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[121]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .