Quasi-Spectral Characterization of Strongly Distance-Regular Graphs

A graph $\Gamma$ with diameter $d$ is strongly distance-regular if $\Gamma$ is distance-regular and its distance-$d$ graph $\Gamma _d$ is strongly regular. The known examples are all the connected strongly regular graphs (i.e. $d=2$), all the antipodal distance-regular graphs, and some distance-regular graphs with diameter $d=3$. The main result in this paper is a characterization of these graphs (among regular graphs with $d$ distinct eigenvalues), in terms of the eigenvalues, the sum of the multiplicities corresponding to the eigenvalues with (non-zero) even subindex, and the harmonic mean of the degrees of the distance-$d$ graph.

[1]  Miguel Angel Fiol,et al.  Some Spectral Characterizations of Strongly Distance-Regular Graphs , 2001, Combinatorics, Probability and Computing.

[2]  van Dam,et al.  A characterization of distance-regular graphs with diameter three , 1995 .

[3]  Miguel Angel Fiol,et al.  Algebraic characterizations of distance-regular graphs , 2002, Discret. Math..

[4]  Edwin R. van Dam,et al.  Bounds on Special Subsets in Graphs, Eigenvalues and Association Schemes , 1998 .

[5]  Willem H. Haemers,et al.  Distance regularity and the spectrum of graphs , 1996 .

[6]  Miguel Angel Fiol,et al.  From Local Adjacency Polynomials to Locally Pseudo-Distance-Regular Graphs , 1997, J. Comb. Theory, Ser. B.

[7]  Miguel Angel Fiol,et al.  From regular boundary graphs to antipodal distance-regular graphs , 1998, J. Graph Theory.

[8]  Miguel Angel Fiol,et al.  Locally Pseudo-Distance-Regular Graphs , 1996, J. Comb. Theory, Ser. B.

[9]  Miguel Angel Fiol,et al.  An Eigenvalue Characterization of Antipodal Distance Regular Graphs , 1997, Electron. J. Comb..

[10]  Miguel Angel Fiol,et al.  On a Class of Polynomials and Its Relation with the Spectra and Diameters of Graphs , 1996, J. Comb. Theory, Ser. B.

[11]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[12]  Miguel Angel Fiol,et al.  Pseudo-Strong Regularity Around a Set , 2002 .

[13]  Willem H. Haemers,et al.  A Characterization of Distance-Regular Graphs with Diameter Three , 1997 .

[14]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[15]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .