A Comprehensive Fuzzy Multiobjective Supplier Selection Model under Price Brakes and Using Interval Comparison Matrices

The research on supplier selection is abundant and the works usually only consider the critical success factors in the buyer–supplier relationship. However, the negative aspects of the buyer–supplier relationship must also be considered simultaneously. In this paper we propose a comprehensive model for ranking an arbitrary number of suppliers, selecting a number of them and allocating a quota of an order to them considering three objective functions: minimizing the net cost, minimizing the net rejected items and minimizing the net late deliveries. The two-stage logarithmic goal programming method for generating weights from interval comparison matrices (Wang et al. 2005) is used for ranking and selecting the suppliers. It is assumed that the suppliers give price discounts. A fuzzy multiobjective model is formulated in such a way as to consider imprecision of information. A numerical example is given to explain how the model is applied.

[1]  C. Weber,et al.  Determination of paths to vendor market efficiency using parallel coordinates representation: A negotiation tool for buyers , 1996 .

[2]  T. L. Saaty,et al.  Decision making with dependence and feedback , 2001 .

[3]  R. Narasimhan An Analytical Approach to Supplier Selection , 1983 .

[4]  Ami Arbel,et al.  Approximate articulation of preference and priority derivation , 1989 .

[5]  Ludmil Mikhailov,et al.  Fuzzy analytical approach to partnership selection in formation of virtual enterprises , 2002 .

[6]  R. Hill,et al.  Using the Analytic Hierarchy Process to Structure the Supplier Selection Procedure , 1992 .

[7]  Linda M. Haines,et al.  A statistical approach to the analytic hierarchy process with interval judgements. (I). Distributions on feasible regions , 1998, Eur. J. Oper. Res..

[8]  Ludmil Mikhailov,et al.  Group prioritization in the AHP by fuzzy preference programming method , 2004, Comput. Oper. Res..

[9]  J. Buckley,et al.  Fuzzy hierarchical analysis , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[10]  Ruoning Xu,et al.  Fuzzy least-squares priority method in the analytic hierarchy process , 2000, Fuzzy Sets Syst..

[11]  Desheng Dash Wu,et al.  Fuzzy multi-objective programming for supplier selection and risk modeling: A possibility approach , 2010, Eur. J. Oper. Res..

[12]  Peter Lorange,et al.  Building successful strategic alliances , 1992 .

[13]  Amy Hsin-I Lee,et al.  A fuzzy supplier selection model with the consideration of benefits, opportunities, costs and risks , 2009, Expert Syst. Appl..

[14]  W. Pedrycz,et al.  A fuzzy extension of Saaty's priority theory , 1983 .

[15]  Luis G. Vargas,et al.  Preference simulation and preference programming: robustness issues in priority derivation , 1993 .

[16]  Eduardo Conde,et al.  A linear optimization problem to derive relative weights using an interval judgement matrix , 2010, Eur. J. Oper. Res..

[17]  Jonathan Burton,et al.  Application of Analytical Hierarchy Process in Operations Management , 1990 .

[18]  Tao Yang,et al.  Risk adjusted multicriteria supplier selection models with applications , 2010 .

[19]  Sang-Chan Park,et al.  An effective supplier selection method for constructing a competitive supply-relationship , 2005, Expert Syst. Appl..

[20]  Esther Dopazo,et al.  Preference Learning from Interval Pairwise Data. A Distance-Based Approach , 2007, IDEAL.

[21]  Manoj Kumar,et al.  A fuzzy goal programming approach for vendor selection problem in a supply chain , 2004, Comput. Ind. Eng..

[22]  L. Haines A statistical approach to the analytic hierarchy process with interval judgments , 2010 .

[23]  Jordan D. Lewis Partnerships for Profit: Structuring and Managing Strategic Alliances , 1990 .

[24]  Moshe Kress,et al.  Approximate articulation of preference and priority derivation — a comment , 1991 .

[25]  Luis G. Vargas,et al.  The Analytic Hierarchy Process With Interval Judgements , 1992 .

[26]  Jian-Bo Yang,et al.  A two-stage logarithmic goal programming method for generating weights from interval comparison matrices , 2005, Fuzzy Sets Syst..

[27]  Mauricio Ruiz-Tagle,et al.  A GP Formulation for Aggregating Preferences with Interval Assessments , 2009 .

[28]  R. Hämäläinen,et al.  Preference programming through approximate ratio comparisons , 1995 .

[29]  Ludmil Mikhailov,et al.  Deriving priorities from fuzzy pairwise comparison judgements , 2003, Fuzzy Sets Syst..

[30]  Chun-Wei R. Lin,et al.  A fuzzy strategic alliance selection framework for supply chain partnering under limited evaluation resources , 2004, Comput. Ind..

[31]  L. C. Leung,et al.  On consistency and ranking of alternatives in fuzzy AHP , 2000, Eur. J. Oper. Res..

[32]  W. A. Dempsey Vendor selection and the buying process , 1978 .

[33]  Ruoning Xu,et al.  Fuzzy logarithmic least squares ranking method in analytic hierarchy process , 1996, Fuzzy Sets Syst..

[34]  J. M. Geringer,et al.  Joint Venture Partner Selection: Strategies for Developed Countries , 1988 .

[35]  Thomas L. Saaty,et al.  Fundamentals of the analytic network process — multiple networks with benefits, costs, opportunities and risks , 2004 .

[36]  Luis G. Vargas,et al.  Uncertainty and rank order in the analytic hierarchy process , 1987 .

[37]  M. P. Biswal,et al.  Preference programming and inconsistent interval judgments , 1997 .

[38]  Raja G. Kasilingam,et al.  Selection of vendors—a mixed-integer programming approach , 1996 .

[39]  N. Anantharaman,et al.  A MULTI-CRITERIA GROUP DECISIONMAKING MODEL FOR SUPPLIER RATING , 2002 .

[40]  Raimo P. Hämäläinen,et al.  Processing interval judgments in the analytic hierarchy process , 1992 .

[41]  F. A. Lootsma,et al.  Multicriteria decision analysis with fuzzy pairwise comparisons , 1989 .

[42]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[43]  John R. Current,et al.  Non-cooperative negotiation strategies for vendor selection , 1998, Eur. J. Oper. Res..

[44]  Kwai-Sang Chin,et al.  An eigenvector method for generating normalized interval and fuzzy weights , 2006, Appl. Math. Comput..

[45]  S. H. Ghodsypour,et al.  A weighted additive fuzzy multiobjective model for the supplier selection problem under price breaks in a supply Chain , 2009 .

[46]  James J. Buckley,et al.  Fuzzy hierarchical analysis: the Lambda-Max method , 2001, Fuzzy Sets Syst..

[47]  Seyed Hassan Ghodsypour,et al.  A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming , 1998 .

[48]  Gary W. Dickson,et al.  AN ANALYSIS OF VENDOR SELECTION SYSTEMS AND DECISIONS , 1966 .

[49]  S. H. Ghodsypour,et al.  Fuzzy multiobjective linear model for supplier selection in a supply chain , 2006 .

[50]  James J. Buckley,et al.  Fuzzy hierarchical analysis revisited , 2001, Eur. J. Oper. Res..

[51]  W. C. Benton,et al.  Vendor selection criteria and methods , 1991 .

[52]  Amy H. I. Lee,et al.  A fuzzy AHP evaluation model for buyer–supplier relationships with the consideration of benefits, opportunities, costs and risks , 2009 .

[53]  J. Current,et al.  A MULTIOBJECTIVE APPROACH TO VENDOR SELECTION , 1993 .

[54]  Manoj Kumar,et al.  A fuzzy programming approach for vendor selection problem in a supply chain , 2006 .

[55]  F. Liu,et al.  The voting analytic hierarchy process method for selecting supplier , 2005 .