Evolution of the electronic structure with size in II-VI semiconductor nanocrystals

In order to provide a quantitatively accurate description of the band-gap variation with sizes in various II-VI semiconductor nanocrystals, we make use of the recently reported tight-binding parametrization of the corresponding bulk systems. Using the same tight-binding scheme and parameters, we calculate the electronic structure of II-VI nanocrystals in real space with sizes ranging between 5 and 80 A in diameter. A comparison with available experimental results from the literature shows an excellent agreement over the entire range of sizes.

[1]  Realistic tight-binding model for the electronic structure of II-VI semiconductors , 2002, cond-mat/0308048.

[2]  Christopher B. Murray,et al.  Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites , 1994 .

[3]  Max G. Lagally,et al.  Atom Motion on Surfaces , 1993 .

[4]  G. Hodes,et al.  QUANTUM SIZE EFFECTS IN THE STUDY OF CHEMICAL SOLUTION DEPOSITION MECHANISMS OF SEMICONDUCTOR FILMS , 1994 .

[5]  K. B. Whaley,et al.  A theoretical study of the influence of the surface on the electronic structure of CdSe nanoclusters , 1994 .

[6]  J. Cheon,et al.  Size and shape controlled ZnTe nanocrystals with quantum confinement effect , 2001 .

[7]  A. Rogach,et al.  Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals , 1999 .

[8]  Arthur J. Nozik,et al.  SYNTHESIS AND CHARACTERIZATION OF INP QUANTUM DOTS , 1994 .

[9]  A. D. Yoffe,et al.  Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .

[10]  Rabitz,et al.  Optimal control of optical pulse propagation in a medium of three-level systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[12]  Nair,et al.  Electron states in a quantum dot in an effective-bond-orbital model. , 1992, Physical review. B, Condensed matter.

[13]  Y. Kayanuma,et al.  Wannier exciton in microcrystals , 1986 .

[14]  Lannoo,et al.  Calculation of the band gap for small CdS and ZnS crystallites. , 1989, Physical review. B, Condensed matter.

[15]  An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes , 2003, cond-mat/0308038.

[16]  Uri Banin,et al.  Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots , 1996 .

[17]  Herron,et al.  Quantum size effects on the exciton energy of CdS clusters. , 1990, Physical review. B, Condensed matter.

[18]  Y. Masumoto,et al.  SIZE-DEPENDENT ENERGY LEVELS OF CDTE QUANTUM DOTS , 1997 .

[19]  U. Woggon,et al.  Nonlinear-optical properties of semiconductor quantum dots and their correlation with the precipitation stage , 1993 .

[20]  H. Fujita,et al.  Semiconductor photocatalysis. I. Quantitative photoreduction of aliphatic ketones to alcohols using defect-free zinc sulfide quantum crystallites , 1990 .

[21]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[22]  G. Hodes,et al.  Size Quantization in Electrodeposited CdTe Nanocrystalline Films , 1997 .

[23]  D. Sarma,et al.  Photoelectron spectroscopic study of CdS nanocrystallites , 1999 .

[24]  S. Gaponenko Optical properties of semiconductor nanocrystals , 1998 .

[25]  Zeng,et al.  Anisotropic broadening of the linewidth in the EPR spectra of Cr3+ ions in various doped yttrium aluminum garnet single crystals. , 1989, Physical review. B, Condensed matter.

[26]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[27]  Einevoll Confinement of excitons in quantum dots. , 1992, Physical review. B, Condensed matter.

[28]  S. Eisebitt,et al.  Soft X-ray spectroscopy of single sized CdS nanocrystals: size confinement and electronic structure , 1999 .

[29]  Exciton states and optical properties of CdSe nanocrystals , 2001, cond-mat/0106108.

[30]  Y. Niquet,et al.  Quantum confinement energies in zinc-blende III–V and group IV semiconductors , 2000 .

[31]  H. Schmidt,et al.  Quantum size effects in semiconductor crystallites: Calculation of the energy spectrum for the confined exciton , 1986 .

[32]  Louis E. Brus,et al.  Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≊15 to 50 Å size range: Evolution from molecular to bulk semiconducting properties , 1985 .

[33]  Y. Nosaka,et al.  Electron Spin Resonance Study of Radicals Produced by Photoirradiation on Quantized and Bulk ZnS Particles , 1997 .

[34]  H. Yoneyama,et al.  Photoinduced electron transfer from zinc sulfide microcrystals modified with various alkanethiols to methyl viologen , 1994 .

[35]  S. Kuwabata,et al.  Characterization of Ultrasmall CdS Nanoparticles Prepared by the Size-Selective Photoetching Technique , 2001 .

[36]  P. Vogl,et al.  A Semi-empirical tight-binding theory of the electronic structure of semiconductors†☆ , 1983 .

[37]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[38]  R. Riera,et al.  Quantum confinement effects in CdTe nanostructured films prepared by the RF sputtering technique , 2000 .

[39]  W. Tremel,et al.  Reverse Micelle Synthesis and Characterization of ZnSe Nanoparticles , 2000 .

[40]  Influence of Quantum Confinement on the Electronic and Magnetic Properties of (Ga,Mn)As Diluted Magnetic Semiconductor , 2001, cond-mat/0111475.

[41]  Tobin,et al.  Valence-band photoemission from a quantum-dot system. , 1991, Physical review letters.

[42]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[43]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[44]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[45]  Alex Zunger,et al.  Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots , 1997 .

[46]  L. Brus Chemical approaches to semiconductor nanocrystals , 1998 .

[47]  Friesner,et al.  Exciton spectra of semiconductor clusters. , 1991, Physical review letters.

[48]  Uri Banin,et al.  Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals , 1996 .

[49]  Simone Pokrant,et al.  Exciton fine structure in CdSe nanoclusters , 1998 .

[50]  D. Sarma,et al.  Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies , 2000 .

[51]  Lloyd L. Chase,et al.  Changes in the Electronic Properties of Si Nanocrystals as a Function of Particle Size , 1998 .

[52]  Nair,et al.  Quantum size effects in spherical semiconductor microcrystals. , 1987, Physical review. B, Condensed matter.

[53]  K. B. Whaley,et al.  Electronic structure of semiconductor nanoclusters: A time dependent theoretical approach , 1993 .

[54]  Ulrike Woggon,et al.  Optical Properties of Semiconductor Quantum Dots , 1996 .

[55]  Tobias Vossmeyer,et al.  CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift , 1994 .

[56]  P. Guyot-Sionnest,et al.  Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals , 1998 .

[57]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .