Copositive Programming – a Survey

Copositive programming is a relatively young field in mathematical optimization. It can be seen as a generalization of semidefinite programming, since it means optimizing over the cone of so called copositive matrices. Like semidefinite programming, it has proved particularly useful in combinatorial and quadratic optimization. The purpose of this survey is to introduce the field to interested readers in the optimization community who wish to get an understanding of the basic concepts and recent developments in copositive programming, including modeling issues and applications, the connection to semidefinite programming and sum-of-squares approaches, as well as algorithmic solution approaches for copositive programs.

[1]  Florian Jarre,et al.  On the computation of C* certificates , 2009, J. Glob. Optim..

[2]  T. Elfving,et al.  Criteria for copositive matrices using simplices and barycentric coordinates , 1995 .

[3]  Chung-Piaw Teo,et al.  Mixed 0-1 Linear Programs Under Objective Uncertainty: A Completely Positive Representation , 2009, Oper. Res..

[4]  Richard W. Cottle,et al.  On classes of copositive matrices , 1970 .

[5]  Charles R. Johnson,et al.  Spectral theory of copositive matrices , 2005 .

[6]  Charles R. Johnson,et al.  Completely positive matrices associated with M-matrices , 1994 .

[7]  Abraham Berman,et al.  Combinatorial Results on Completely Positive Matrices , 1987 .

[8]  Immanuel M. Bomze,et al.  Multi-Standard Quadratic Optimization: interior point methods and cone programming reformulation , 2010, Comput. Optim. Appl..

[9]  Mirjam Dür,et al.  An Adaptive Linear Approximation Algorithm for Copositive Programs , 2009, SIAM J. Optim..

[10]  安藤 毅 Completely positive matrices , 1991 .

[11]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[12]  Florian Jarre,et al.  A note on Burer’s copositive representation of mixed-binary QPs , 2010, Optim. Lett..

[13]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[14]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[15]  A. Hoffman,et al.  Two Remarks on Copositive Matrices* , 2001 .

[16]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[17]  Samuel Burer,et al.  D.C. Versus Copositive Bounds for Standard QP , 2005, J. Glob. Optim..

[18]  Franz Rendl,et al.  Copositive programming motivated bounds on the stability and the chromatic numbers , 2009, Math. Program..

[19]  Etienne de Klerk,et al.  On Copositive Programming and Standard Quadratic Optimization Problems , 2000, J. Glob. Optim..

[20]  Alan J. Hoffman,et al.  On Copositive Matrices with - 1, 0, 1 Entries , 1973, J. Comb. Theory A.

[21]  Javier Peña,et al.  Computing the Stability Number of a Graph Via Linear and Semidefinite Programming , 2007, SIAM J. Optim..

[22]  Franz Rendl,et al.  A Copositive Programming Approach to Graph Partitioning , 2007, SIAM J. Optim..

[23]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[24]  Franz Rendl,et al.  Quadratic factorization heuristics for copositive programming , 2011, Math. Program. Comput..

[25]  Mirjam Dür,et al.  The difference between 5×5 doubly nonnegative and completely positive matrices , 2009 .

[26]  Kh. D. Ikramov,et al.  Conditionally definite matrices , 2000 .

[27]  J. C. Preisig,et al.  Copositivity and the Minimization of Quadratic Functions with Nonnegativity and Quadratic Equality Constraints , 1996 .

[28]  Mirjam Dür,et al.  Interior points of the completely positive cone. , 2008 .

[29]  V. Baston Extreme copositive quadratic forms , 1969 .

[30]  Monique Laurent,et al.  The Operator Psi for the Chromatic Number of a Graph , 2008, SIAM J. Optim..

[31]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[32]  A. J. Quist,et al.  Copositive relaxation for general quadratic programming. , 1998 .

[33]  Kh. D. Ikramov Linear-time algorithm for verifying the copositivity of an acyclic matrix , 2002 .

[34]  A. J. Quist,et al.  Copositive realxation for genera quadratic programming , 1998 .

[35]  M. On Nonnegative Factorization of Matrices , 2001 .

[36]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[37]  Alan J. Hoffman,et al.  Two remarks on compositive matrices , 1969 .

[38]  Peter J. C. Dickinson AN IMPROVED CHARACTERISATION OF THE INTERIOR OF THE COMPLETELY POSITIVE CONE , 2010 .

[39]  M. Hall,et al.  Copositive and completely positive quadratic forms , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  E. Alper Yldrm On the Accuracy of Uniform Polyhedral Approximations of the Copositive Cone , 2009 .

[41]  Uriel G. Rothblum,et al.  A note on the computation of the CP-rank , 2006 .

[42]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[43]  Li Ping,et al.  Criteria for copositive matrices of order four , 1993 .

[44]  M. Laurent THE OPERATOR FOR THE CHROMATIC NUMBER OF AGRAPH , 2008 .

[45]  Abraham Berman,et al.  Characterization of completely positive graphs , 1993, Discret. Math..

[46]  Immanuel M. Bomze,et al.  Linear-Time Copositivity Detection for Tridiagonal Matrices and Extension to Block-Tridiagonality , 2000, SIAM J. Matrix Anal. Appl..

[47]  Mirjam Dür,et al.  Algorithmic copositivity detection by simplicial partition , 2008 .

[48]  E. Alper Yildirim,et al.  On the accuracy of uniform polyhedral approximations of the copositive cone , 2012, Optim. Methods Softw..

[49]  L. D. Baumert,et al.  EXTREME COPOSITIVE QUADRATIC FORMS, II , 2012 .

[50]  Franz Rendl,et al.  Copositive and semidefinite relaxations of the quadratic assignment problem , 2009, Discret. Optim..

[51]  Henryk Minc,et al.  On the Matrix Equation X′X = A , 1962, Proceedings of the Edinburgh Mathematical Society.

[52]  Karthik Natarajan,et al.  MIXED ZERO-ONE LINEAR PROGRAMS UNDER OBJECTIVE UNCERTAINTY : A COMPLETELY POSITIVE REPRESENTATION , 2010 .

[53]  Alberto Seeger,et al.  A Variational Approach to Copositive Matrices , 2010, SIAM Rev..