Development of GPON upstream physical-media-dependent prototypes

This paper presents three new gigabit-capable passive optical network (GPON) physical-media-dependent (PMD) prototypes: a burst-mode optical transmitter, an avalanche photodiode/transimpedance amplifier (APD-TIA), and a burst-mode optical receiver. With these, point-to-multipoint (P2MP) upstream transmission can be realized in a high-performance GPON at 1.25 Gb/s. Performance measurements on the new burst-mode upstream PMD modules comply with GPON uplink simulations. The laser transmitter can quickly set and stabilize the launched optical power level over a wide temperature range with better than 1-dB accuracy. A burst-mode receiver sensitivity of -32.8 dBm (BER=10/sup -10/) is measured, combined with a dynamic range of 23 dB at a fixed APD avalanche gain of 6. Full compliance is achieved with the recently approved ITU-T Recommendation G.984.2 supporting an innovative overall power-leveling mechanism.

[1]  Jan Vandewege,et al.  Design and implementation of a dual mode digital APC algorithm for an APON burst-mode laser driver. , 2002 .

[2]  Jan Vandewege,et al.  DC-coupled 1.25 Gbit/s burst-mode receiver with automatic offset compensation , 2004 .

[3]  Wei Chen,et al.  FSAN GPON upstream burst-mode transmission experiments , 2004 .

[4]  Xing-Zhi Qiu Prototyping ITU-T-GPON, the new efficient and flexible FTTP PON solution , 2004 .

[5]  P. Ossieur,et al.  Demonstration of extended split APON , 2002, Optical Fiber Communication Conference and Exhibit.

[6]  John D. Angelopoulos,et al.  The IST-GIANT project (GIgaPON Access NeTwork). , 2002 .

[7]  Jan Vandewege,et al.  Lab Test Bed Development for Evaluation of the GigaPON Uplink Performance , 2003 .

[8]  Peter Ossieur,et al.  Sensitivity penalty calculation for burst-mode receivers using avalanche photodiodes , 2003 .

[9]  Jan Vandewege,et al.  Burst mode transmission in PON access systems. , 2002 .

[10]  E. Sackinger,et al.  A 15-mW, 155-Mb/s CMOS burst-mode laser driver with automatic power control and end-of-life detection , 1999, IEEE Journal of Solid-State Circuits.

[11]  Man-Seop Lee,et al.  AC-coupled burst-mode optical receiver employing 8B/10B coding , 2003 .

[12]  Man-Seop Lee,et al.  Burst-mode penalty of AC-coupled optical receivers optimized for 8B/10B line code , 2004, IEEE Photonics Technology Letters.

[13]  R. G. Swartz,et al.  DC-1 Gb/s burst-mode compatible receiver for optical bus applications , 1992 .

[14]  John D. Angelopoulos,et al.  Efficient transport of packets with QoS in an FSAN-aligned GPON , 2004, IEEE Communications Magazine.

[15]  Jan Vandewege,et al.  Design of ONT transmitters for Gigabit PON's , 2003 .

[16]  Jan Vandewege,et al.  A Burst-Mode Laser Transmitter with Fast Digital Power Control for a 155 Mb/s Upstream PON , 2003 .

[17]  M. Doci,et al.  A digitally programmable burst-mode 155 Mb/s transmitter for PON , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[18]  Peter Ossieur,et al.  DC-coupled burst-mode transmitter for 1.25 Gbit/s upstream PON , 2004 .

[19]  Jan Vandewege,et al.  Study and demonstration of extensions to the standard FSAN BPON , 2002 .

[20]  J. Bauwelinck,et al.  Generic and intelligent CMOS 155 Mb/s burst mode laser driver chip design and performance , 2002, Proceedings of the 28th European Solid-State Circuits Conference.

[21]  Jan Vandewege,et al.  Current Mode Circuits for Fast and Accurate Optical Level Monitoring with Wide Dynamic Range , 2004 .

[22]  Jan Vandewege,et al.  Burst bit-error rate calculation for GPON systems , 2003 .

[23]  I Van De Voorde,et al.  The superPON demonstrator: an exploration of possible evolution paths for optical access networks , 2000, IEEE Commun. Mag..