The concatenation and partitioning of linear finite state machines

Abstract The behaviour of linear finite state machines when partitioned into a number of smaller machines or concatenated into longer ones is discussed. Linear feedback shift registers (LFSRs) and linear cellular automata registers (LCARs) used in built-in self-test, cryptography and coding theory are examined, as is the concatenating and/or partitioning of machines which have a maximal length cycle structure to obtain longer or smaller ones maintaining this properly. It is shown that LCARs have better overall behaviour than LFSRs. Some minimum one-cell modifications which improve the number of concatenated or partitioned machines and maintain a maximal length cycle are introduced. The hardware cost is discussed.

[1]  José Silva Matos,et al.  A boundary scan test controller for hierarchical BIST , 1992, Proceedings International Test Conference 1992.

[2]  Premachandran R. Menon,et al.  ROBUSTLY SCAN-TESTABLE CMOS SEQUENTIAL CIRCUITS , 1991, 1991, Proceedings. International Test Conference.

[3]  W. Greub Linear Algebra , 1981 .

[4]  Howard C. Card,et al.  Group Properties of Cellular Automata and VLSI Applications , 1986, IEEE Transactions on Computers.

[5]  Xiaoling Sun,et al.  MERGING CONCURRENT CHECKING AND OFF-LINE BIST , 1992, Proceedings International Test Conference 1992.

[6]  Alex S. Biewenga,et al.  Using boundary scan test to test random access memory clusters , 1993, Proceedings of IEEE International Test Conference - (ITC).

[7]  Sl Hurst A Hardware Consideration of CALBO Testing , 1989 .

[8]  F. Brglez,et al.  Boundary scan with built-in self-test , 1989, IEEE Design & Test of Computers.

[9]  Dilip K. Bhavsar "Concatenable Polydividers": Bit-Sliced LFSR Chips for Board Self-Test , 1985, ITC.

[10]  H. Stone Discrete Mathematical Structures and Their Applications , 1973 .

[11]  D. Michael Miller,et al.  The analysis of one-dimensional linear cellular automata and their aliasing properties , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Lee Whetsel A Proposed Method of Accessing 1149.1 in a Backplane Environment , 1992, Proceedings International Test Conference 1992.

[13]  Jon C. Muzio,et al.  Determination of minimal cost one-dimensional linear hybrid cellular automata , 1991 .

[14]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[15]  Tom Langford Utilizing boundary scan to implement BIST , 1993, Proceedings of IEEE International Test Conference - (ITC).

[16]  Howard C. Card,et al.  Parallel Random Number Generation for VLSI Systems Using Cellular Automata , 1989, IEEE Trans. Computers.

[17]  Jon C. Muzio,et al.  Synthesis of one-dimensional linear hybrid cellular automata , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  Marcelo Lubaszewski,et al.  On the design of self-checking boundary scannable boards , 1992, Proceedings International Test Conference 1992.

[19]  Jon C. Muzio,et al.  The partitioning of linear registers for testing applications , 1993 .

[20]  Stephen C. Hilla Boundary scan testing for multichip modules , 1992, Proceedings International Test Conference 1992.

[21]  Janak H. Patel,et al.  Design for Testability Using Architectural Descriptions , 1992, Proceedings International Test Conference 1992.

[22]  Salvador Bracho,et al.  Concatenated LFSR makes a weighted built-in logic block observation , 1994 .

[23]  Benoit Nadeau-Dostie,et al.  ScanBist A Multi-frequency Scan-Based BIST Method , 1992, Proceedings International Test Conference 1992.

[24]  Jacob Savir,et al.  Built In Test for VLSI: Pseudorandom Techniques , 1987 .

[25]  Michael Nicolaidis,et al.  Self-exercising checkers for unified built-in self-test (UBIST) , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[26]  B. Elspas,et al.  The Theory of Autonomous Linear Sequential Networks , 1959 .