New combinatorial topology bounds for renaming: The upper bound

In the <i>renaming</i> task, <i>n</i>+1 processes start with unique input names from a large space and must choose unique output names taken from a smaller name space, 0,1,…, <i>K</i>. To rule out trivial solutions, a protocol must be <i>anonymous</i>: the value chosen by a process can depend on its input name and on the execution, but not on the specific process ID. Attiya et al. [1990] showed that renaming has a wait-free solution when <i>K</i>≥ 2<i>n</i>. Several algebraic topology proofs of a lower bound stating that no such protocol exists when <i>K</i> < 2<i>n</i> have been published. In a companion article, we present the first completely combinatorial renaming lower bound proof stating if <i>n</i> + 1 is a primer power, then renaming is not wait-free solvable when <i>K</i> < 2<i>n</i>. In this article, we show that if <i>n</i> + 1 is not a primer power, then there exists a wait-free renaming protocol for <i>K</i> = 2<i>n</i>−1. Therefore the renaming lower bound for <i>K</i> < 2<i>n</i> is incorrect. More precisely, our main theorem states that there exists a wait-free renaming protocol for <i>K</i> < 2<i>n</i> if and only if <i>n</i> + 1 is not a prime power. We prove this result using the known equivalence of <i>K</i>-renaming for <i>K</i> = 2<i>n</i> − 1 and the <i>weak symmetry breaking</i> task: processes have no input values and the output values are 0 or 1, and it is required that in every execution in which all processes participate, at least one process decides 1 and at least one process decides 0.

[1]  Nir Shavit,et al.  Toward a Topological Characterization of Asynchronous Complexity , 2006, SIAM J. Comput..

[2]  Eli Gafni The extended BG-simulation and the characterization of t-resiliency , 2009, STOC '09.

[3]  Maurice Herlihy,et al.  The topological structure of asynchronous computability , 1999, JACM.

[4]  Jos'e Luis P'erez Garmendia On Weighted Tempered Moving Averages Processes , 2008 .

[5]  S. M. Voronin,et al.  On camacho-sad's theorem about the existence of a separatrix , 2010 .

[6]  Maurice Herlihy,et al.  A classification of wait-free loop agreement tasks , 2003, Theor. Comput. Sci..

[7]  Eli Gafni,et al.  Immediate atomic snapshots and fast renaming , 1993, PODC '93.

[8]  Adagba O Henry,et al.  Transformation of Groups , 2012 .

[9]  Hortensia Galeana-Sánchez,et al.  On the structure of strong 3-quasi-transitive digraphs , 2010, Discret. Math..

[10]  Maurice Herlihy,et al.  An Equivariance Theorem with Applications to Renaming , 2013, Algorithmica.

[11]  K. Fan Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral triangulation* , 1967 .

[12]  Hortensia Galeana-Sánchez,et al.  Directed hypergraphs: A tool for researching digraphs and hypergraphs , 2009, Discuss. Math. Graph Theory.

[13]  Amaury Lambert,et al.  Proof(s) of the Lamperti representation of Continuous-State Branching Processes , 2008, 0802.2693.

[14]  Mexico On the asymptotic behaviour of increasing self-similar Markov processes , 2009 .

[15]  Nancy A. Lynch,et al.  The BG distributed simulation algorithm , 2001, Distributed Computing.

[16]  Eli Gafni,et al.  Three-Processor Tasks Are Undecidable , 1999, SIAM J. Comput..

[17]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[18]  Enrique Zuazua,et al.  Identification of the class of initial data for the insensitizing control of the heat equation , 2008 .

[19]  Juan José Montellano-Ballesteros,et al.  Kernels by Monochromatic Directed Paths In m-Colored Digraphs With Quasi-Transitive Chromatic Classes , 2012, Ars Comb..

[20]  Jorge Alberto Achcar,et al.  Analysing weekly ozone averages in Mexico City using stochastic volatility models , 2007 .

[21]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs , 2010, Discuss. Math. Graph Theory.

[22]  Hagit Attiya,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 1998 .

[23]  S. M. Voronin,et al.  Extended Holonomy and Topological Invariance of Vanishing Holonomy Group , 2008 .

[24]  Maurice Herlihy,et al.  The decidability of distributed decision tasks (extended abstract) , 1997, STOC '97.

[25]  Sorin Micu,et al.  A spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle , 2010, Asymptot. Anal..

[26]  Maurice Herlihy,et al.  An Equivariance Theorem with Applications to Renaming , 2012, LATIN.

[27]  Hagit Attiya,et al.  Sharing memory robustly in message-passing systems , 1990, PODC '90.

[28]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in bipartite tournaments , 2009, Discuss. Math. Graph Theory.

[29]  Don Redmond Number Theory , 2018, Theoretical and Mathematical Physics.

[30]  Eli Gafni,et al.  Musical Benches , 2005, DISC.

[31]  Mika Olsen,et al.  Kernels by monochromatic paths in digraphs with covering number 2 , 2011, Discret. Math..

[32]  Maurice Herlihy,et al.  The asynchronous computability theorem for t-resilient tasks , 1993, STOC.

[33]  Piermarco Cannarsa,et al.  Controllability results for 1-d coupled degenerate parabolic equations , 2008 .

[34]  Soma Chaudhuri,et al.  Agreement is harder than consensus: set consensus problems in totally asynchronous systems , 1990, PODC '90.

[35]  Eli Gafni,et al.  Generalized FLP impossibility result for t-resilient asynchronous computations , 1993, STOC.

[36]  Maurice Herlihy,et al.  Subconsensus Tasks: Renaming Is Weaker Than Set Agreement , 2006, DISC.

[37]  Camino Balbuena,et al.  Constructions of bi-regular cages , 2009, Discret. Math..

[38]  H. Hopf,et al.  Abbildungsklassenn-dimensionaler Mannigfaltigkeiten , 1927 .

[39]  Michael Henle,et al.  A combinatorial introduction to topology , 1978 .

[40]  Juan José Montellano-Ballesteros,et al.  Absorbent sets and kernels by monochromatic directed paths in m-colored tournaments , 2008, Australas. J Comb..

[41]  Hagit Attiya,et al.  Renaming in an asynchronous environment , 1990, JACM.

[42]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[43]  Eli Gafni,et al.  A simple algorithmically reasoned characterization of wait-free computation (extended abstract) , 1997, PODC '97.

[44]  Marcin Paprzycki,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 2001, Scalable Comput. Pract. Exp..

[45]  Sergio Rajsbaum,et al.  New combinatorial topology upper and lower bounds for renaming , 2008, PODC '08.

[46]  Juan José Montellano-Ballesteros,et al.  On the Pseudoachromatic Index of the Complete Graph III , 2011, Graphs and Combinatorics.

[47]  Hagit Attiya,et al.  The Combinatorial Structure of Wait-Free Solvable Tasks , 2002, SIAM J. Comput..

[48]  Hortensia Galeana-Sánchez,et al.  A classification of arc-locally semicomplete digraphs , 2009, Electron. Notes Discret. Math..

[49]  Camino Balbuena,et al.  Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages , 2010, Discret. Math..

[50]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: the lower bound , 2010, Distributed Computing.

[51]  Achour Mostéfaoui,et al.  From adaptive renaming to set agreement , 2009, Theor. Comput. Sci..

[52]  Claudio Munoz,et al.  Singular limits for the bi-laplacian operator with exponential nonlinearity in $\R^4$ , 2007, 0709.2878.

[53]  Eli Gafni The 0-1-Exclusion Families of Tasks , 2008, OPODIS.

[54]  Rachid Guerraoui,et al.  A topological treatment of early-deciding set-agreement , 2009, Theor. Comput. Sci..

[55]  Jorge Alberto Achcar,et al.  Some non-homogeneous Poisson models with multiple change-points to study the behaviour of the number of ozone exceedances in Mexico City , 2007 .

[56]  M. Karoubi K-Theory: An Introduction , 1978 .

[57]  G. Hardy,et al.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work , 1978 .

[58]  Mika Olsen,et al.  A conjecture of Neumann-Lara on infinite families of r-dichromatic circulant tournaments , 2010, Discret. Math..

[59]  Hortensia Galeana-Sánchez,et al.  Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs , 2009, Discuss. Math. Graph Theory.

[60]  Thomas P. Dence,et al.  Elements of the theory of numbers , 1999 .

[61]  Michael E. Saks,et al.  Wait-free k-set agreement is impossible: the topology of public knowledge , 1993, STOC.

[62]  Maurice Herlihy,et al.  Algebraic spans , 1995, PODC '95.

[63]  Achour Mostéfaoui,et al.  Condition-Based Protocols for Set Agreement Problems , 2002, DISC.

[64]  Soma Chaudhuri,et al.  More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems , 1993, Inf. Comput..

[65]  Victor Hernandez-Urbina,et al.  Applying DNA computing to diagnose-and-interfere hepatic fibrosis , 2010, 2010 Sixth International Conference on Natural Computation.

[66]  H. Galeana-Sánchez,et al.  Independent domination by monochromatic paths in arc coloured bipartite tournaments , 2009 .

[67]  John Havlicek A Note on the Homotopy Type of Wait-Free Atomic Snapshot Protocol Complexes , 2004, SIAM J. Comput..