Homogenization of Lateral Diffusion on a Random Surface

We study the problem of lateral diffusion on a static, quasi-planar surface generated by a stationary, ergodic random field possessing rapid small-scale spatial fluctuations. The aim is to study the effective behavior of a particle undergoing Brownian motion on the surface, viewed as a projection on the underlying plane. By formulating the problem as a diffusion in a random medium, we are able to use known results from the theory of stochastic homogenization of SDEs to show that, in the limit of small scale fluctuations, the diffusion process behaves quantitatively like a Brownian motion with constant diffusion tensor $\mathbf{D}$. In one dimension, the effective diffusion coefficient is given by $\frac{1}{Z^2}$, where $Z$ is the average line element of the surface. In two-dimensions, $\mathbf{D}$ will not have a closed-form expression in general. However, we are able to derive variational bounds for the effective diffusion tensor. Moreover, in the special case when $\mathbf{D}$ is isotropic, we show that $\mathbf{D}=\frac{1}{Z}\mathbf{I}$, where $Z$ is the average area element of the random surface. We also describe a numerical scheme for approximating the effective diffusion tensor and illustrate this scheme with three examples.

[1]  H. Osada Homogenization of diffusion processes with random stationary coefficients , 1983 .

[2]  Inge S. Helland,et al.  Central Limit Theorems for Martingales with Discrete or Continuous Time , 1982 .

[3]  Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix , 2009, 0902.1586.

[4]  W. Vaz,et al.  Chapter 6 - Lateral Diffusion in Membranes , 1995 .

[5]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[6]  Rony Granek,et al.  From Semi-Flexible Polymers to Membranes: Anomalous Diffusion and Reptation , 1997 .

[7]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[8]  F. Brown,et al.  Diffusion on ruffled membrane surfaces. , 2007, The Journal of chemical physics.

[9]  U. Seifert,et al.  Lateral diffusion of a protein on a fluctuating membrane , 2005 .

[10]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[11]  W. Kohler,et al.  Bounds for the effective conductivity of random media , 1982 .

[12]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[13]  Y. Gliklikh Stochastic Analysis on Manifolds , 2011 .

[14]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[15]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Muruhan Rathinam,et al.  HOMOGENIZATION, SYMMETRY, AND PERIODIZATION IN DIFFUSIVE RANDOM MEDIA , 2012 .

[17]  M. Penrose,et al.  CONTINUUM PERCOLATION (Cambridge Tracts in Mathematics 119) By Ronald Meester and Rahul Roy: 238 pp., £35.00, ISBN 0 521 47504 X (Cambridge University Press, 1996) , 1998 .

[18]  Houman Owhadi,et al.  Approximation of the effective conductivity of ergodic media by periodization , 2002 .

[19]  Jessica Fuerst,et al.  Stochastic Differential Equations And Applications , 2016 .

[20]  I. V. Uporov,et al.  Diffusion on the fluctuating random surface , 1982 .

[21]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[22]  Isaac Balberg Continuum Percolation , 2009, Encyclopedia of Complexity and Systems Science.

[23]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[24]  Andrew M. Stuart,et al.  A Multiscale Analysis of Diffusions on Rapidly Varying Surfaces , 2013, J. Nonlinear Sci..

[25]  M. King,et al.  Apparent 2-D diffusivity in a ruffled cell membrane. , 2004, Journal of theoretical biology.

[26]  Paul J Atzberger,et al.  Hybrid elastic and discrete-particle approach to biomembrane dynamics with application to the mobility of curved integral membrane proteins. , 2009, Physical review letters.

[27]  G. A. Pavliotis,et al.  Parameter Estimation for Multiscale Diffusions , 2007 .

[28]  Michael Reed,et al.  Methods of modern mathematical physics (vol.) I : functional analysis / Reed Michael, Barry Simon , 1980 .

[29]  P. Bressloff,et al.  Stochastic models of intracellular transport , 2013 .

[30]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[31]  Bogdan Vernescu,et al.  Homogenization methods for multiscale mechanics , 2010 .

[32]  K. Jacobson,et al.  Lateral diffusion in membranes. , 1983, Cell motility.

[33]  永幡 幸生 書評 Tomasz Komorowski, Claudio Landim and Stefano Olla : Fluctuations in Markov Processes : Time Symmetry and Martingale Approximation , 2015 .

[34]  Andrew J. Majda,et al.  An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows , 1991 .

[35]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics: Bibliography , 2008 .

[36]  Andrey L. Piatnitski,et al.  Approximations of Effective Coefficients in Stochastic Homogenization , 2002 .

[37]  Stefan Gustafsson,et al.  Diffusion on a flexible surface , 1997 .

[38]  Scott Schumacher,et al.  Diffusions with random coefficients , 1984 .

[39]  P. Ferrari,et al.  An invariance principle for reversible Markov processes. Applications to random motions in random environments , 1989 .

[40]  I. Schur,et al.  Neue Begründung der Theorie der Gruppencharaktere: Sitzungsberichte der Preussischen Akademie der Wissenschaften 1905, Physikalisch-Mathematische Klasse, 406 – 432 , 1973 .

[41]  Stefan Gustafsson,et al.  DIFFUSION IN A FLUCTUATING RANDOM GEOMETRY , 1997 .

[42]  Peter Muller,et al.  A Survey of Rigorous Results on Random Schrödinger Operators for Amorphous Solids , 2005 .

[43]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[44]  K. Oelschlager,et al.  Homogenization of a Diffusion Process in a Divergence-Free Random Field , 1988 .

[45]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[46]  On the sector condition and homogenization of diffusions with a Gaussian drift , 2003 .

[47]  Nir S Gov,et al.  Diffusion in curved fluid membranes. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  L. Pastur On the Schrödinger equation with a random potential , 1971 .

[49]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[50]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[51]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .