Non-linear effects accompanying terawatt laser-pulse in air and their applications

Due to potential of applications, self-trapping of a peak-power laser pulse in a so called filament became an intensively investigated phenomenon. In this paper we demonstrate experimentally advantages of using filaments for the remote laser induced plasma spectroscopy (LIBS). This novel approach can increase effective range of conventional LIBS system up to single kilometers. We also show that Fourier-limited pulse does not optimize LIBS signal, opening the perspective for the pulse shaping techniques in a break-down spectroscopy.

[1]  Zhiyi Wei,et al.  Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  See Leang Chin,et al.  Multiphoton ionization of atoms , 1984 .

[3]  J. Ripoche,et al.  Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding? , 1998, Optics letters.

[4]  Vladislav V. Yakovlev,et al.  Feedback quantum control of molecular electronic population transfer , 1997 .

[5]  S Zamith,et al.  Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system. , 2001, Physical review letters.

[6]  Olga G. Kosareva,et al.  Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air , 2002 .

[7]  R Sauerbrey,et al.  Multiple filamentation of terawatt laser pulses in air. , 2004, Physical review letters.

[8]  W. Kruer,et al.  The Physics of Laser Plasma Interactions , 2019 .

[9]  E. Salmon,et al.  White-Light Filaments for Atmospheric Analysis , 2003, Science.

[10]  Bernard Prade,et al.  Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air , 2000 .

[11]  A. Mysyrowicz,et al.  Formation of a conducting channel in air by self-guided femtosecond laser pulses. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  R R Alfano,et al.  Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors. , 1985, Optics letters.

[13]  Arnaud Couairon,et al.  Filamentation length of powerful laser pulses , 2003 .

[14]  A. Couairon,et al.  Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization , 2004 .

[15]  J. Owens,et al.  Optical refractive index of air: dependence on pressure, temperature and composition. , 1967, Applied optics.

[16]  B. Stein,et al.  Remote sensing of the atmosphere using ultrashort laser pulses , 2000 .

[17]  K. Ueda,et al.  Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses. , 1995, Optics letters.

[18]  H. R. Lange,et al.  High-Order Harmonic Generation and Quasiphase Matching in Xenon Using Self-Guided Femtosecond Pulses , 1998 .

[19]  F. Salin,et al.  Conical emission from self-guided femtosecond pulses in air. , 1996, Optics letters.

[20]  Jin Yu,et al.  Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes , 2004 .

[21]  Gilles Riazuelo,et al.  Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases , 1999 .

[22]  R Sauerbrey,et al.  Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. , 2000, Optics letters.

[23]  Dimitra N. Stratis,et al.  LIBS using dual- and ultra-short laser pulses , 2001, Fresenius' journal of analytical chemistry.

[24]  L. Keldysh,et al.  IONIZATION IN THE FIELD OF A STRONG ELECTROMAGNETIC WAVE , 1964 .

[25]  S. Chin,et al.  Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air. , 1997, Optics letters.

[26]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[27]  G. Cheriaux,et al.  A laser system producing 5×1019 W/cm2 at 10 Hz , 1997 .

[28]  Bowden,et al.  Femtosecond pulse propagation in air: variational analysis , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Jin Yu,et al.  Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation☆ , 2005 .

[30]  Bernard Prade,et al.  Determination of the inertial contribution to the nonlinear refractive index of air, N 2 , and O 2 by use of unfocused high-intensity femtosecond laser pulses , 1997 .

[31]  Jin Yu,et al.  Long-distance remote laser-induced breakdown spectroscopy using filamentation in air , 2004 .

[32]  P. W. Grounds,et al.  Electrical conductivity of a femtosecond laser generated plasma channel in air , 2001 .

[33]  Jin Yu,et al.  Teramobile: A mobile femtosecond-terawatt laser and detection system , 2002 .

[34]  A Couairon,et al.  Gas-induced solitons. , 2001, Physical review letters.

[35]  S. Mao,et al.  Initiation of an early-stage plasma during picosecond laser ablation of solids , 2000 .

[36]  See Leang Chin,et al.  The critical laser intensity of self-guided light filaments in air , 2000 .

[37]  G. Mourou,et al.  Self-channeling of high-peak-power femtosecond laser pulses in air. , 1995, Optics letters.

[38]  J. J. Laserna,et al.  Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer , 2004 .

[39]  Richard F. Haglund,et al.  Laser ablation and desorption , 1998 .

[40]  J. Marburger,et al.  Self-focusing: theory , 1975, International Quantum Electronics Conference, 2005..

[41]  A. Couairon,et al.  Light filaments in air for ultraviolet and infrared wavelengths. , 2002, Physical review letters.

[42]  P. Lucey,et al.  Stand-off Raman spectroscopic detection of minerals on planetary surfaces. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.