Mass Action and Conservation of Current

Abstract The law of mass action does not force a series of chemical reactions to have the same current flow everywhere. Interruption of far-away current does not stop current everywhere in a series of chemical reactions (analyzed according to the law of mass action), and so does not obey Maxwell’s equations. An additional constraint and equation is needed to enforce global continuity of current. The additional constraint is introduced in this paper in the special case that the chemical reaction describes spatial movement through narrow channels. In that case, a fully consistent treatment is possible using different models of charge movement. The general case must be dealt with by variational methods that enforce consistency of all the physical laws involved. Violations of current continuity arise away from equilibrium, when current flows, and the law of mass action is applied to a non-equilibrium situation, different from the systems considered when the law was originally derived. Device design in the chemical world is difficult because simple laws are not obeyed in that way. Rate constants of the law of mass action are found experimentally to change from one set of conditions to another. The law of mass action is not robust in most cases and cannot serve the same role that circuit models do in our electrical technology. Robust models and device designs in the chemical world will not be possible until continuity of current is embedded in a generalization of the law of mass action using a consistent variational model of energy and dissipation.

[1]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[2]  J. J. Thomson,et al.  XXXI. On the effect of electrification and chemical action on a steam-jet, and of water-vapour on the discharge of electricity through gases , 1893 .

[3]  H. A. Nicholson An Introduction to the Study of Biology , 2007, Nature.

[4]  A. Hill Chemical Wave Transmission in Nerve , 1932 .

[5]  R. Becker,et al.  The classical theory of electricity and magnetism , 1932 .

[6]  A. Hodgkin Evidence for electrical transmission in nerve , 1937, The Journal of physiology.

[7]  A. Hodgkin Evidence for electrical transmission in nerve , 1937 .

[8]  C. A. Kraus The present status of the theory of electrolytes , 1938 .

[9]  N. Mott The Theory of Crystal Rectifiers , 1939 .

[10]  J. Oncley Electric Moments and Relaxation Times of Protein Molecules. , 1940 .

[11]  J. Oncley The Investigation of Proteins by Dielectric Measurements. , 1942 .

[12]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[13]  A. Hodgkin,et al.  The electrical constants of a crustacean nerve fibre , 1946, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[14]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[15]  A. Hodgkin Ionic Currents Underlying Activity in the Giant Axon of the Squid , 1949 .

[16]  W. V. Roosbroeck Theory of the flow of electrons and holes in germanium and other semiconductors , 1950 .

[17]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[18]  J. E. Prue Interaction in Ionic Solutions , 1958, Nature.

[19]  R. M. Fuoss,et al.  The Kinetic Term in Electrolytic Conductance , 1958 .

[20]  R. M. Fuoss,et al.  THERMODYNAMIC POTENTIALS OF SYMMETRICAL ELECTROLYTES. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. M. Fuoss,et al.  THE CONDUCTANCE OF SYMMETRICAL ELECTROLYTES. I. POTENTIAL OF TOTAL FORCE , 1962 .

[22]  R. Gurney,et al.  Electronic Processes in Ionic Crystals , 1964 .

[23]  E. Lund Guldberg and Waage and the law of mass action , 1965 .

[24]  W. Ebeling,et al.  On the Conductance of Symmetrical Electrolytes , 1966 .

[25]  K. Bløtekjær,et al.  Collision Integrals for Displaced Maxwellian Distribution , 1969 .

[26]  M. Shur Physics of Semiconductor Devices , 1969 .

[27]  R. Eisenberg,et al.  Three-dimensional electrical field problems in physiology , 1970 .

[28]  R. Eisenberg,et al.  A Singular Perturbation Analysis of Induced Electric Fields in Nerve Cells , 1971 .

[29]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[30]  R. Simons The steady and non-steady state properties of bipolar membranes. , 1972, Biochimica et biophysica acta.

[31]  H. M. Schey Div, grad, curl, and all that , 1973 .

[32]  G. Hills,et al.  The conductance of electrolyte solutions , 1973 .

[33]  W. Chandler,et al.  Voltage Dependent Charge Movement in Skeletal Muscle: a Possible Step in Excitation–Contraction Coupling , 1973, Nature.

[34]  F. Bezanilla,et al.  Currents Related to Movement of the Gating Particles of the Sodium Channels , 1973, Nature.

[35]  H. Coster The double fixed charge membrane. Solution-membrane ion partition effects and membrane potentials. , 1973, Biophysical journal.

[36]  D. Levitt General continuum analysis of transport through pores. I. Proof of Onsager's reciprocity postulate for uniform pore. , 1975, Biophysical journal.

[37]  J. Hall Access resistance of a small circular pore , 1975, The Journal of general physiology.

[38]  G. Mcrobert Biographical Memoirs of Fellows of the Royal Society , 1975 .

[39]  R. Eisenberg,et al.  The time-dependent potential in a spherical cell using matched asymptotic expansions , 1975 .

[40]  B. Hille Ionic selectivity, saturation, and block in sodium channels. A four- barrier model , 1975, The Journal of general physiology.

[41]  D. Levitt General continuum analysis of transport through pores. II. Nonuniform pores. , 1975, Biophysical journal.

[42]  B. De Loach The IMPATT story , 1976, IEEE Transactions on Electron Devices.

[43]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[44]  R. Eisenberg,et al.  Matched Asymptotic Expansions of the Green’s Function for the Electric Potential in an Infinite Cylindrical Cell , 1976 .

[45]  Stephen G. Brush,et al.  Response to book review:The kind of motion we call heat , 1978 .

[46]  D. Levitt Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel. , 1978, Biophysical journal.

[47]  D. Levitt,et al.  Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. , 1978, Biophysical journal.

[48]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[49]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[50]  A. Buffa,et al.  Electricity, magnetism, and light , 1982 .

[51]  D. Levitt Comparison of Nernst-Planck and reaction rate models for multiply occupied channels. , 1982, Biophysical journal.

[52]  Levitt Dg Comparison of Nernst-Planck and reaction rate models for multiply occupied channels. , 1982 .

[53]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[54]  R. Buck Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the nernst—planck equation applied to membrane systems☆ , 1984 .

[55]  D. Levitt Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels. , 1985, Biophysical journal.

[56]  P. Wolynes,et al.  The theory of ion transport through membrane channels. , 1985, Progress in biophysics and molecular biology.

[57]  J. Zemaitis,et al.  Handbook of aqueous electrolyte thermodynamics , 1986 .

[58]  D. Levitt Interpretation of biological ion channel flux data--reaction-rate versus continuum theory. , 1986, Annual review of biophysics and biophysical chemistry.

[59]  R. Eisenberg,et al.  Surmounting barriers in ionic channels , 1988, Quarterly Reviews of Biophysics.

[60]  Sah Chih-Tang Evolution of the MOS transistor-from conception to VLSI , 1988, Proc. IEEE.

[61]  D. Bers,et al.  Electrodiffusion of ions approaching the mouth of a conducting membrane channel. , 1988, Biophysical journal.

[62]  G. Barton Elements of Green's Functions and Propagation: Potentials, Diffusion, and Waves , 1989 .

[63]  D. Levitt Continuum model of voltage-dependent gating. Macroscopic conductance, gating current, and single-channel behavior. , 1989, Biophysical journal.

[64]  P. Lugli,et al.  The Monte Carlo Method for Semiconductor Device Simulation , 1990 .

[65]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[66]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[67]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[68]  D. Levitt General continuum theory for multiion channel. I. Theory. , 1991, Biophysical journal.

[69]  R. Balian The Perfect Gas , 1991 .

[70]  D. Levitt General continuum theory for multiion channel. II. Application to acetylcholine channel. , 1991, Biophysical journal.

[71]  N. Chatterjee Equations of State for Fluids and Fluid Mixtures , 1991 .

[72]  A. Huxley Kenneth Stewart Cole, 10 July 1900 - 18 April 1984 , 1992, Biographical Memoirs of Fellows of the Royal Society.

[73]  E. Neher Ion channels for communication between and within cells , 1992, Neuron.

[74]  E. Neher Ion channels for communication between and within cells , 1992, Neuron.

[75]  L. Segel,et al.  Law of mass action , 1992, Nature.

[76]  G. Vrbóva Chance and Design by Alan Hodgkin, Cambridge University Press, 1992. $59.95/£40.00 (xi + 412 pages) ISBN 0 521 40099 6 , 1992, Trends in Neurosciences.

[77]  R. Eisenberg,et al.  Barrier crossing with concentration boundary conditions in biological channels and chemical reactions , 1993 .

[78]  P. Hänggi,et al.  Activated barrier crossing : applications in physics, chemistry and biology , 1993 .

[79]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[80]  Gordon E. Moore Lithography and the future of Moore's law , 1995, Advanced Lithography.

[81]  R. Eisenberg,et al.  Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations , 1995 .

[82]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[83]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[84]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[85]  J. Jerome Analysis of Charge Transport , 1996 .

[86]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[87]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[88]  J. Barthel,et al.  Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .

[89]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[90]  A. Compston Chance and design. , 1999, Journal of neurology.

[91]  K. Hess Advanced Theory of Semiconductor Devices , 1999 .

[92]  R. Eisenberg,et al.  From Structure to Function in Open Ionic Channels , 1999, The Journal of Membrane Biology.

[93]  J. Chazalviel Coulomb Screening by Mobile Charges , 1999 .

[94]  D.L. Critchlow,et al.  Mosfet Scaling-the Driver of VLSI Technology , 1999, Proceedings of the IEEE.

[95]  J. Baird A Generalized Statement of the Law of Mass Action , 1999 .

[96]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[97]  V. Vlachy Ionic effects beyond Poisson-Boltzmann theory. , 2003, Annual review of physical chemistry.

[98]  W. Saslow Voltaic cells for physicists: Two surface pumps and an internal resistance , 1999 .

[99]  R. Angel Equations of State , 2000 .

[100]  S. G. Penoncello,et al.  18 Multiparameter equations of state , 2000 .

[101]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  A. Huxley From overshoot to voltage clamp , 2002, Trends in Neurosciences.

[103]  Y. Levin,et al.  Electrostatic correlations: from plasma to biology , 2002 .

[104]  Reinhard Stolle,et al.  Electromagnetic coupling of twisted pair cables , 2002, IEEE J. Sel. Areas Commun..

[105]  J. Hansen,et al.  Basic Concepts for Simple and Complex Liquids , 2003 .

[106]  E. Kaxiras Atomic and electronic structure of solids , 2003 .

[107]  W. Fawcett Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details , 2004 .

[108]  W. Frensley Basic Concepts for Simple and Complex Liquids , 2004 .

[109]  M. Ieong,et al.  Silicon Device Scaling to the Sub-10-nm Regime , 2004, Science.

[110]  R. Eisenberg,et al.  Computing numerically the access resistance of a pore , 2005, European Biophysics Journal.

[111]  B. Eisenberg,et al.  Relating microscopic charge movement to macroscopic currents: the Ramo-Shockley theorem applied to ion channels. , 2004, Biophysical journal.

[112]  Amit Singer,et al.  Models of boundary behavior of particles diffusing between two concentrations , 2004, SPIE International Symposium on Fluctuations and Noise.

[113]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  C. Morris Life's solution , 2004 .

[115]  D. Post,et al.  Computational Science Demands a New Paradigm , 2005 .

[116]  B. Nadler,et al.  Langevin trajectories between fixed concentrations. , 2005, Physical review letters.

[117]  Casimir effect and the quantum vacuum , 2005, hep-th/0503158.

[118]  N. Seidah,et al.  Transport of ions of one kind through thin membranes , 1974, The Journal of Membrane Biology.

[119]  R. Eisenberg,et al.  Diffusion theory and discrete rate constants in ion permeation , 1988, The Journal of Membrane Biology.

[120]  Z. Schuss,et al.  Brownian simulations and unidirectional flux in diffusion. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[121]  M. Kurnikova,et al.  Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels , 2005, IEEE Transactions on NanoBioscience.

[122]  E. Gutman Can the Tafel equation be derived from first principles , 2005 .

[123]  J. Dufrêche,et al.  Analytical theories of transport in concentrated electrolyte solutions from the MSA. , 2005, The journal of physical chemistry. B.

[124]  N. Seidah,et al.  Transport of ions of one kind through thin membranes , 1972, The Journal of Membrane Biology.

[125]  Gordon E. Moore,et al.  Lithography and the Future of Moore's Law, Copyright 1995 IEEE. Reprinted with permission. Proc. SPIE Vol. 2437, pp. 2–17 , 1995, IEEE Solid-State Circuits Newsletter.

[126]  C. Lécuyer Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age , 2006 .

[127]  E. Gutman Corrigendum to “Can the Tafel equation be derived from first principles?” [Corrosion Science 47 (2005) 3086–3096] , 2006 .

[128]  Rolf J. Ryham,et al.  An Energetic Variational Approach to Mathematical Modeling of Charged Fluids: Charge Phases, Simulation and Well Posedness , 2006 .

[129]  V. Pande,et al.  Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory , 2006, Science.

[130]  I. R. Mcdonald,et al.  Theory of Simple Liquids 3rd edition , 2006 .

[131]  Hyungsub Choi :Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age , 2007 .

[132]  J. Deconinck,et al.  Relaxation effect on the Onsager coefficients of mixed strong electrolytes in the mean spherical approximation. , 2007, The journal of physical chemistry. B.

[133]  Martin Burger,et al.  Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..

[134]  Robert H. Dennard,et al.  Design of ion-implanted MOSFET's with very small physical dimensions , 2007 .

[135]  B. Eisenberg,et al.  Shockley-Ramo theorem measures conformation changes of ion channels and proteins , 2007 .

[136]  B. Eisenberg,et al.  Steric selectivity in Na channels arising from protein polarization and mobile side chains. , 2007, Biophysical journal.

[137]  R. Eisenberg Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.

[138]  Lloyd L. Lee,et al.  Molecular Thermodynamics of Electrolyte Solutions , 2008 .

[139]  B. Roux The membrane potential and its representation by a constant electric field in computer simulations. , 2008, Biophysical journal.

[140]  F. Bezanilla How membrane proteins sense voltage , 2008, Nature Reviews Molecular Cell Biology.

[141]  D. Gillespie Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. , 2008, Biophysical journal.

[142]  E. Joffe,et al.  Grounds for Grounding , 2009 .

[143]  P. Turq,et al.  Electrical conductivity of mixed electrolytes: Modeling within the mean spherical approximation. , 2009, The journal of physical chemistry. B.

[144]  B. Li,et al.  Continuum electrostatics for ionic solutions with non-uniform ionic sizes , 2009 .

[145]  W. Kunz Specific Ion Effects , 2009 .

[146]  D. Kwak,et al.  Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .

[147]  R. Podgornik,et al.  Beyond standard Poisson–Boltzmann theory: ion-specific interactions in aqueous solutions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[148]  E. Maginn From discovery to data: What must happen for molecular simulation to become a mainstream chemical engineering tool , 2009 .

[149]  R. Eisenberg,et al.  Self-consistent analytic solution for the current and the access resistance in open ion channels. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion , 2009, The Journal of general physiology.

[151]  B. Eisenberg,et al.  Conductance and Concentration Relationship in a Reduced Model of the K Channel , 2010 .

[152]  B. Roux,et al.  Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions , 2010 .

[153]  D. Fraenkel Simplified electrostatic model for the thermodynamic excess potentials of binary strong electrolyte solutions with size-dissimilar ions , 2010 .

[154]  D. Vasileska,et al.  Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation , 2010 .

[155]  Joseph John Thomson Notes on Recent Researches in Electricity and Magnetism, Intended as a Sequel: To Professor Clerk-Maxwell's Treatise on Electricity and Magnetism , 2010 .

[156]  G. Kontogeorgis,et al.  Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories , 2010 .

[157]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[158]  B. Eisenberg Multiple Scales in the Simulation of Ion Channels and Proteins. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[159]  Toka Diagana,et al.  An Introduction to Stochastic Differential Equations , 2011 .

[160]  R. Eisenberg,et al.  A model of electrodiffusion and osmotic water flow and its energetic structure , 2011 .

[161]  B. Eisenberg,et al.  Self-organized models of selectivity in calcium channels , 2011, Physical biology.

[162]  F. Bezanilla,et al.  Controlling the Activity of a Phosphatase and Tensin Homolog (PTEN) by Membrane Potential* , 2011, The Journal of Biological Chemistry.

[163]  B. Eisenberg Life's Solutions are Not Ideal , 2011, 1105.0184.

[164]  Maria M. Reif,et al.  Single-ion solvation : experimental and theoretical approaches to elusive thermodynamic quantities , 2011 .

[165]  B. Johannesson,et al.  Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums , 2011 .

[166]  B. Eisenberg Crowded Charges in Ion Channels , 2010, 1009.1786.

[167]  Chun Liu,et al.  New Poisson–Boltzmann type equations: one-dimensional solutions , 2011 .

[168]  Paul E. Smith,et al.  A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides. , 2011, Journal of chemical theory and computation.

[169]  B. Eisenberg Mass Action in Ionic Solutions. , 2011, Chemical physics letters.

[170]  M. Burger Inverse problems in ion channel modelling , 2011 .

[171]  YunKyong Hyon MATHEMATICAL MODELING OF COMPLEX FLUIDS , 2012 .

[172]  K. Schulten,et al.  An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations , 2012, The Journal of general physiology.

[173]  Chun Liu,et al.  PNP equations with steric effects: a model of ion flow through channels. , 2012, The journal of physical chemistry. B.

[174]  B. Eisenberg A Leading Role for Mathematics in the Study of Ionic Solutions , 2012 .

[175]  YunKyong Hyon,et al.  Energy variational approach to study charge inversion (layering) near charged walls , 2012 .

[176]  B. Roux,et al.  Constant electric field simulations of the membrane potential illustrated with simple systems. , 2012, Biochimica et biophysica acta.

[177]  T. Qian,et al.  Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates , 2012 .

[178]  Christoph Junghans,et al.  Kirkwood-Buff Coarse-Grained Force Fields for Aqueous Solutions. , 2012, Journal of chemical theory and computation.

[179]  Jie Liang,et al.  Ionizable side chains at catalytic active sites of enzymes , 2012, European Biophysics Journal.

[180]  Guo-Wei Wei,et al.  Variational Multiscale Models for Charge Transport , 2012, SIAM Rev..

[181]  Hao Wu,et al.  On transport of ionic solutions: from kinetic laws to continuum descriptions , 2013 .

[182]  Jinn-Liang Liu,et al.  Correlated ions in a calcium channel model: a Poisson-Fermi theory. , 2013, The journal of physical chemistry. B.

[183]  B. Eisenberg Interacting ions in biophysics: real is not ideal. , 2013, Biophysical journal.

[184]  B. Eisenberg Ionic interactions are everywhere. , 2013, Physiology.

[185]  Jinn-Liang Liu,et al.  Numerical methods for the Poisson-Fermi equation in electrolytes , 2013, J. Comput. Phys..

[186]  P. Sheng,et al.  An Energetic Variational Approach for ion transport , 2014, 1408.4114.

[187]  P. McClintock,et al.  Observation of "Remote Knock-On", a New Permeation-Enhancement Mechanism in Ion Channels , 2014 .

[188]  Jinn-Liang Liu,et al.  Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels. , 2014, The Journal of chemical physics.

[189]  Jinn-Liang Liu,et al.  Analytical models of calcium binding in a calcium channel. , 2014, The Journal of chemical physics.

[190]  B. Eisenberg,et al.  A new approach to the Lennard-Jones potential and a new model: PNP-steric equations , 2014 .

[191]  P. Hildebrandt More than fine tuning , 2014, Science.

[192]  S. Boxer,et al.  Extreme electric fields power catalysis in the active site of ketosteroid isomerase , 2014, Science.

[193]  D. Boda Monte Carlo Simulation of Electrolyte Solutions in Biology: In and Out of Equilibrium , 2014 .

[194]  Chun Liu,et al.  Transport of Charged Particles: Entropy Production and Maximum Dissipation Principle , 2014, 1407.8245.

[195]  L. Evans An Introduction to Stochastic Differential Equations , 2014 .

[196]  Jian Yang,et al.  A numerical study on chloride migration in cracked concrete using multi-component ionic transport models , 2015 .

[197]  D. Gillespie A review of steric interactions of ions: Why some theories succeed and others fail to account for ion size , 2015 .

[198]  D. Bock,et al.  In situ visualization of Li/Ag2VP2O8 batteries revealing rate-dependent discharge mechanism , 2015, Science.

[199]  Jinn-Liang Liu,et al.  Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[200]  Jinn-Liang Liu,et al.  Poisson-Fermi model of single ion activities in aqueous solutions , 2015 .

[201]  A. Garcia,et al.  Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations , 2014, The journal of physical chemistry. B.

[202]  Chun Liu,et al.  Diffusion Limit of Kinetic Equations for Multiple Species Charged Particles , 2013, 1306.3053.

[203]  B. Johannesson,et al.  Use of a multi-species reactive transport model to simulate chloride ingress in mortar exposed to NaCl solution or sea-water , 2015 .

[204]  D. Fraenkel Computing excess functions of ionic solutions: the smaller-ion shell model versus the primitive model. 2. Ion-size parameters. , 2015, Journal of chemical theory and computation.

[205]  N. Dudney,et al.  Using all energy in a battery , 2015, Science.

[206]  D. Fraenkel Computing excess functions of ionic solutions: the smaller-ion shell model versus the primitive model. 1. Activity coefficients. , 2015, Journal of chemical theory and computation.

[207]  Paul Bã ¼ rger Silicon Vlsi Technology Fundamentals Practice And Modeling , 2016 .

[208]  F. Diederich Electrons And Holes In Semiconductors With Applications To Transistor Electronics , 2016 .