Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces

The past two decades have witnessed an ever-growing number of emerging applications that utilize terahertz (THz) waves, ranging from advanced biomedical imaging, through novel security applications, fast wireless communications, and new abilities to study and control matter in all of its phases. The development and deployment of these emerging technologies is however held back, due to a substantial lack of simple methods for efficient generation, detection and manipulation of THz waves. Recently it was shown that uniform nonlinear metasurfaces can efficiently generate broadband single-cycle THz pulses. Here we show that judicious engineering of the single-emitters that comprise the metasurface, enables to obtain unprecedented control of the spatiotemporal properties of the emitted THz wavepackets. We specifically demonstrate generation of propagating spatiotemporal quadrupole and few-cycles THz pulses with engineered angular dispersion. Our results place nonlinear metasurfaces as a new promising tool for generating application-tailored THz fields with controlled spatial and temporal characteristics.While the terahertz range has become increasingly important for a wide range of applications, efficient sources with bespoke output characteristics are still lacking. Here, Keren-Zur et al. show that engineering of a metasurface’s individual elements allows control of the spatiotemporal properties of the emitted terahertz radiation.

[1]  Tal Ellenbogen,et al.  Nonlinear Beam Shaping with Plasmonic Metasurfaces , 2016 .

[2]  J. Lekner Helical light pulses , 2004 .

[3]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[4]  O-Pil Kwon,et al.  Tunable multi-cycle THz generation in organic crystal HMQ-TMS. , 2015, Optics express.

[5]  Martin Wegener,et al.  Broadband terahertz generation from metamaterials. , 2014, Nature communications.

[6]  Joseph Zyss,et al.  Octupolar Plasmonic Meta-Molecules for Nonlinear Chiral Watermarking at Subwavelength Scale , 2015 .

[7]  K. Jefimovs,et al.  A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures , 2006 .

[8]  C. Soukoulis,et al.  Investigation of broadband terahertz generation from metasurface. , 2018, Optics express.

[9]  D. Tsai,et al.  Generation of Flying Electromagnetic Donuts , 2017, 1707.06088.

[10]  B. Bousquet,et al.  Review of Terahertz Tomography Techniques , 2014 .

[11]  Klaas Wynne,et al.  Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces. , 2009, Optics express.

[12]  Patrick Mounaix,et al.  Non-invasive investigation of art paintings by terahertz imaging , 2010 .

[13]  E. Bründermann,et al.  Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy , 2006, Proceedings of the National Academy of Sciences.

[14]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[15]  Daniel M Mittleman,et al.  Twenty years of terahertz imaging [Invited]. , 2018, Optics express.

[16]  Daniel M. Mittleman,et al.  Frequency-division multiplexing in the terahertz range using a leaky-wave antenna , 2015, Nature Photonics.

[17]  O. Ambacher,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[18]  Zhang Cunlin,et al.  Terahertz Science and Technology , 2009 .

[19]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[20]  R. Hellwarth,et al.  Focused one-cycle electromagnetic pulses. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Yan Zhou,et al.  Molecular orientation and alignment by intense single-cycle THz pulses. , 2011, Physical review letters.

[22]  Tal Ellenbogen,et al.  Controlling light with metamaterial-based nonlinear photonic crystals , 2015, Nature Photonics.

[23]  K. Nelson,et al.  A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses , 2015 .

[24]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .

[25]  David R. Smith,et al.  Origin of Second-Harmonic Generation Enhancement in Optical Split-Ring Resonators , 2012, 1204.5676.

[26]  Tal Ellenbogen,et al.  Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays. , 2017, Physical review letters.

[27]  D. Tsai,et al.  Pulse generation scheme for flying electromagnetic doughnuts , 2018 .

[28]  D. Mittleman,et al.  Nonlinear terahertz metamaterials with active electrical control , 2017 .

[29]  H. Suchowski,et al.  Shaping light with nonlinear metasurfaces , 2018 .

[30]  David M. Fried,et al.  THE DESIGN, FABRICATION AND CHARACTERIZATION OF , 2004 .

[31]  Ziolkowski,et al.  Localized transmission of electromagnetic energy. , 1989, Physical review. A, General physics.

[32]  Alfred Leitenstorfer,et al.  Coherent terahertz control of antiferromagnetic spin waves , 2011 .

[33]  Yongtian Wang,et al.  Spin and wavelength multiplexed nonlinear metasurface holography , 2016, Nature Communications.

[34]  Y. Prior,et al.  Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces , 2015, Nature communications.

[35]  Nikolay Zheludev,et al.  Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures. , 2015, Optics express.

[36]  A. Valencia,et al.  Angular dispersion: an enabling tool in nonlinear and quantum optics , 2010 .

[37]  Xin Zhang,et al.  Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials , 2015, Light: Science & Applications.

[38]  T. Meier,et al.  Collective effects in second-harmonic generation from split-ring-resonator arrays , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[39]  J. Lekner Localized electromagnetic pulses with azimuthal dependence , 2004 .

[40]  Michael B. Sinclair,et al.  Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells. , 2014 .

[41]  J. S. Gomez-Diaz,et al.  Nonlinear Processes in Multi-Quantum-Well Plasmonic Metasurfaces:Electromagnetic Response, Saturation Effects, Limits and Potentials , 2015, 1506.07095.

[42]  Daniel M. Mittleman,et al.  Perspective: Terahertz science and technology , 2017 .

[43]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[44]  Carsten Rockstuhl,et al.  Resonances of split-ring resonator metamaterials in the near infrared , 2006 .

[45]  Boubacar Kante,et al.  Predicting nonlinear properties of metamaterials from the linear response. , 2015, Nature materials.

[46]  X. Zhang,et al.  Free‐space electro‐optic sampling of terahertz beams , 1995 .

[47]  A. Davies,et al.  Terahertz spectroscopy of explosives and drugs , 2008 .

[48]  J. S. Gomez-Diaz,et al.  Highly-efficient THz generation using nonlinear plasmonic metasurfaces , 2017 .

[49]  Hartmut G. Roskos,et al.  Comparative performance of terahertz emitters in amplifier-laser-based systems , 2005 .

[50]  M. Wegener,et al.  Collective effects in second-harmonic generation from split-ring-resonator arrays. , 2012 .

[51]  Andrei Gorodetsky,et al.  Enhancement of terahertz photoconductive antenna operation by optical nanoantennas , 2016, 1607.07233.

[52]  Andrea Alù,et al.  Ultrathin Gradient Nonlinear Metasurface with a Giant Nonlinear Response , 2016 .

[53]  E. K. Stone,et al.  THz generation from plasmonic nanoparticle arrays. , 2011, Nano letters.

[54]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[55]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.