Heat transfer enhancement using air-atomized spray cooling with water–Al2O3 nanofluid

[1]  Surjya K. Pal,et al.  Experimental investigation of air-atomized spray with aqueous polymer additive for high heat flux applications , 2014 .

[2]  Saeid Vafaei,et al.  Role of nanoparticles on nanofluid boiling phenomenon: Nanoparticle deposition , 2014 .

[3]  A. Tseng,et al.  Effects of titania nanoparticles on heat transfer performance of spray cooling with full cone nozzle , 2014 .

[4]  Surjya K. Pal,et al.  Influence of Ultrafast Cooling on Microstructure and Mechanical Properties of Steel , 2013 .

[5]  Surjya K. Pal,et al.  Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives , 2013 .

[6]  An experimental investigation on the impingement of a planar jet of Al2O3–water nanofluid on a V-shaped plate , 2013 .

[7]  Y. Hardalupas,et al.  Investigating the use of nanofluids to improve high heat flux cooling systems , 2013, 1311.5078.

[8]  Surjya K. Pal,et al.  Experimental study of the effect of spray inclination on ultrafast cooling of a hot steel plate , 2013 .

[9]  Surjya K. Pal,et al.  Experimental Investigation of Effect of a Surfactant to Increase Cooling of Hot Steel Plates by a Water Jet , 2013 .

[10]  A. Mourgues,et al.  Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid , 2013 .

[11]  A. Tseng,et al.  Spray cooling by solid jet nozzles using alumina/water nanofluids , 2012 .

[12]  V. Prodanovic,et al.  Effect of Inclination Angle and Flow Rate on the Heat Transfer During Bottom Jet Cooling of a Steel Plate , 2012 .

[13]  Z. Cao,et al.  Nanoparticle enhanced evaporation of liquids: A case study of silicone oil and water , 2012, 1210.6101.

[14]  Wei Yu,et al.  Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling , 2012 .

[15]  A. Tseng,et al.  Heat transfer of spray cooling using alumina/water nanofluids with full cone nozzles , 2012 .

[16]  S. Saha,et al.  Study on boiling heat transfer of water–TiO2 and water–MWCNT nanofluids based laminar jet impingement on heated steel surface , 2012 .

[17]  Saad Tanvir,et al.  Surface tension of Nanofluid-type fuels containing suspended nanomaterials , 2012, Nanoscale Research Letters.

[18]  Y. Xuan,et al.  Experimental investigation of submerged single jet impingement using Cu–water nanofluid , 2012 .

[19]  M. Ali,et al.  Nanofluid impingement jet heat transfer , 2012, Nanoscale Research Letters.

[20]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[21]  Hyungdae Kim,et al.  Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review , 2011, Nanoscale research letters.

[22]  A. Ganguli,et al.  Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures , 2011, Nanoscale research letters.

[23]  Ranjit Kumar,et al.  Application of Water Based-TiO2 Nano-fluid for Cooling of Hot Steel Plate , 2010 .

[24]  A. Samanta,et al.  Spray evaporative cooling to achieve ultra fast cooling in runout table , 2009 .

[25]  Jürgen Schmidt,et al.  Enhancement and Local Regulation of Metal Quenching Using Atomized Sprays , 2008 .

[26]  Karl-Heinz Spitzer,et al.  Spray water cooling heat transfer at high temperatures and liquid mass fluxes , 2008 .

[27]  A. Gorni,et al.  Accelerated Cooling of Steel Plates: The Time Has Come , 2008 .

[28]  Seok Pil Jang,et al.  Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles , 2008 .

[29]  Shi-Chune Yao,et al.  SPRAY COOLING OF HIGH TEMPERATURE METALS USING HIGH MASS FLUX INDUSTRIAL NOZZLES , 2008 .

[30]  B. Sarkar,et al.  Effect of electric field during gel-layer controlled ultrafiltration of synthetic and fruit juice , 2008 .

[31]  S. Kim,et al.  Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux , 2007 .

[32]  C. T. Nguyen,et al.  Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system , 2007 .

[33]  Zhen-hua Liu,et al.  Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface , 2007 .

[34]  Aditya Bansal,et al.  Alumina Nanofluid for Spray Cooling Enhancement , 2007 .

[35]  Mary A. Wells,et al.  Effect of subsurface thermocouple installation on the discrepancy of the measured thermal history and predicted surface heat flux during a quench operation , 2005 .

[36]  A. Mosyak,et al.  Heat transfer characteristics of water and APG surfactant solution in a micro-channel heat sink , 2005 .

[37]  Soon-Heung Chang,et al.  Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool , 2004 .

[38]  Eckehard Specht,et al.  Transient measurement of heat transfer in metal quenching with atomized sprays , 2004 .

[39]  R. A. Wallis,et al.  Quenching of aerospace forgings from high temperatures using air-assisted, atomized water sprays , 2002 .

[40]  Mónica Oliveira,et al.  Neural network analysis of experimental data for air/water spray cooling , 2001 .

[41]  S. J. Hardy,et al.  Influence of runout table operation setup on hot strip quality, subject to initial strip condition: heat transfer issues , 2001 .

[42]  H. R. Busby,et al.  Practical inverse analysis in engineering , 1997 .

[43]  M. Schrader,et al.  Young-Dupre Revisited , 1995 .

[44]  H. R. Busby,et al.  Optimal regularization of the inverse‐heat conduction problem using the L‐curve , 1994 .

[45]  Johann Gottlob Leidenfrost On the fixation of water in diverse fire , 1966 .

[46]  N. Zuber Hydrodynamic aspects of boiling heat transfer (thesis) , 1959 .

[47]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.