Quasi-Periodicity in Dissipative and Conservative Systems

In the classical perturbation theory of conditionally periodic motions series occur that, due to resonances, diverge on a dense set. In the complement of the resonances, small divisors make convergence problematic. Nonetheless, convergence of the series can be established in a nowhere dense set of positive Hausdorff measure in a suitable dimension. In the product of phase space and parameter space this gives rise to quasi-periodic invariant tori with Diophantine frequency vectors. This kind of result belongs to kam theory, as this developed from Kolmogorov’s 1954 paper [77]. We sketch elements of this development, both in the dissipative and the conservative setting. ∗ Parially supported by grant MB-G-b of the Dutch FOM program Mathematical Physics and by grant HPRN-CT-2000-00113 of the European Community funding for the Research and Training

[1]  Konstantinos Efstathiou,et al.  Metamorphoses of Hamiltonian Systems with Symmetries , 2005 .

[2]  Nguyen Tien Zung A note on focus-focus singularities , 1997 .

[3]  J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems , 1950 .

[4]  J. Yoccoz C1-conjugaison des difféomorphismes du cercle , 1983 .

[5]  G. Iooss,et al.  Quasi-genericity of bifurcations to high dimensional invariant tori for maps , 1988 .

[6]  F. Takens,et al.  Mixed spectra and rotational symmetry , 1993 .

[7]  Henryk Żoł̨dek,et al.  Bifurcations of certain family of planar vector fields tangent to axes , 1987 .

[8]  Joaquim Puig Cantor Spectrum for the Almost Mathieu Operator , 2004 .

[9]  Robert S. MacKay,et al.  Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .

[10]  J. Palis,et al.  Geometric theory of dynamical systems : an introduction , 1984 .

[11]  F. Takens Measure and category , 1988 .

[12]  E. Zehnder,et al.  Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .

[13]  B. Fiedler,et al.  Complicated dynamics of scalar reaction diffusion equations with a nonlocal term , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  George Huitema,et al.  Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .

[15]  J. Moser Combination tones for Duffing's equation , 1965 .

[16]  Carles Simó,et al.  Resonance Tongues and Instability Pockets in the Quasi–Periodic Hill–Schrödinger Equation , 2003 .

[17]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[18]  Sergei Kuksin,et al.  Seminar on Dynamical Systems , 1994 .

[19]  George Huitema,et al.  Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .

[20]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[21]  J. Moser Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics. , 1973 .

[22]  F. Takens,et al.  Integrable and non-integrable deformations of the skew Hopf bifurcation , 1999 .

[23]  H. Broer,et al.  On a quasi-periodic Hopf bifurcation , 1987 .

[24]  F. Takens Forced oscillations and bifurcations , 2001 .

[25]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[26]  R. Thom Stabilité structurelle et morphogenèse , 1974 .

[27]  J. Bricmont SCIENCE OF CHAOS OR CHAOS IN SCIENCE? , 1995, chao-dyn/9603009.

[28]  Richard Cushman,et al.  Global Aspects of Classical Integrable Systems , 2004 .

[29]  A. Bolsinov Integrable Hamiltonian Systems with Two Degrees of Freedom , 1997 .

[30]  van Aernout Enter Statistical Mechanics, A Short Treatise , 2000 .

[31]  G. Gentile,et al.  Field Theory and KAM tori , 1993, chao-dyn/9503006.

[32]  Guido Gentile,et al.  Aspects of Ergodic, Qualitative and Statistical Theory of Motion , 2004 .

[33]  Unfoldings of quasi-periodic tori in reversible systems , 1995 .

[34]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[35]  Angel Jorbayx,et al.  On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .

[36]  Cantor Spectrum for the Almost Mathieu Operator. Corollaries of localization,reducibility and duality , 2003, math-ph/0309004.

[37]  Luigi Chierchia,et al.  Drift and diffusion in phase space , 1994 .

[38]  Bob W. Rink A Cantor set of tori with monodromy near a focus-focus singularity , 2003, nlin/0306058.

[39]  Santiago Ibáñez,et al.  Singularities of vector fields on , 1998 .

[40]  Alain Chenciner,et al.  Bifurcations de points fixes elliptiques. II. Orbites periodiques et ensembles de Cantor invariants , 1985 .

[41]  Hendrik Broer Kolmogorov, la 'K' de KAM , 2004 .

[42]  J. Moser On the Theory of Quasiperiodic Motions , 1966 .

[43]  M. Ciocci Bifurication of periodic orbits and persistance of quasi periodic orbits in families of reversible systems , 2004 .

[44]  鈴木 麻美,et al.  「On the Iteration of Analytic Functions」(木村俊房先生の仕事から) , 1998 .

[45]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[46]  Rafael de la Llave,et al.  A Tutorial on Kam Theory , 2003 .

[47]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[48]  F. Wagener On the quasi-periodic d-fold degenerate bifurcation , 2005 .

[49]  Jürgen Pöschel,et al.  Integrability of Hamiltonian systems on cantor sets , 1982 .

[50]  H. Broer,et al.  The quasi-periodic Hamiltonian Hopf bifurcation , 2007 .

[51]  P. Blanchard Complex analytic dynamics on the Riemann sphere , 1984 .

[52]  Richard Cushman,et al.  Monodromy in the hydrogen atom in crossed fields , 2000 .

[53]  Carles Simó,et al.  Towards global models near homoclinic tangencies of dissipative diffeomorphisms , 1998 .

[54]  Nearly-integrable perturbations of the Lagrange top : applications of KAM-theory , 2006, math/0608255.

[55]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[56]  R. Montgomery,et al.  The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case , 1988 .

[57]  H. Broer Survey on dissipative KAM theory including quasi-periodic bifurcation theory based on lectures by Henk Broer , 2005 .

[58]  Bifurcations of Normally Parabolic Tori in Hamiltonian Systems , 2007 .

[59]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[60]  Floris Takens,et al.  Bifurcations and stability of families of diffeomorphisms , 1983 .

[61]  F. Takens,et al.  On the nature of turbulence , 1971 .

[62]  M. Sevryuk New Results in the Reversible Kam Theory , 1994 .

[63]  Jean-Christophe Yoccoz,et al.  Analytic linearization of circle diffeomorphisms , 2002 .

[64]  J. Guckenheimer,et al.  Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos , 1991 .

[65]  David Ruelle,et al.  Occurrence of Strange Axiom A Attractors Near Quasi Periodic Flows on T m , m ≧ 3 , 1995 .

[66]  Helmut Rüßmann Konvergente Reihenentwicklungen in der Störungstheorie der Himmelsmechanik , 1979 .

[67]  Heinz Hanßmann,et al.  Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach , 2003 .

[68]  E. Zehnder An implicit function theorem for small divisor problems , 1974 .

[69]  J. Moser On invariant curves of area-preserving mappings of an anulus , 1962 .

[70]  A. Roshko On the problem of turbulence , 2000 .

[71]  H. Broer,et al.  Umbilical torus bifurcations in Hamiltonian systems , 2006 .

[72]  Antti Kupiainen,et al.  KAM Theorem and Quantum Field Theory , 1999 .

[73]  Florian Wagener,et al.  Resonances in skew and reducible quasi-periodic Hopf bifurcations , 2000 .

[74]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[75]  V. M. Tikhomirov,et al.  The General Theory of Dynamical Systems and Classical Mechanics , 1991 .

[76]  Henk W. Broer,et al.  The Quasi-Periodic Reversible Hopf bifurcation , 2007, Int. J. Bifurc. Chaos.

[77]  H. Bateman Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .

[78]  H. Hanßmann The Quasi-Periodic Centre-Saddle Bifurcation , 1998 .

[79]  H. Broer KAM theory: The legacy of Kolmogorov’s 1954 paper , 2004 .

[80]  H. Broer,et al.  Quasi periodic flow near a codimension one singularity of a divergence free vector field in dimension three , 1981 .

[81]  Darryl D. Holm,et al.  CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy. , 2004, Physical review letters.

[82]  H. Broer,et al.  Quasi-Periodic Stability of Subfamilies of an Unfolded Skew Hopf Bifurcation , 2000 .

[83]  Alain Chenciner,et al.  Bifurcations De Points Fixes Elliptiques , 1985 .

[84]  Johannes J. Duistermaat,et al.  On global action‐angle coordinates , 1980 .

[85]  Hassler Whitney,et al.  Differentiable Functions Defined in Closed Sets. I , 1934 .

[86]  J. Laskar Large scale chaos and marginal stability in the solar system , 1996 .

[87]  M. R. Herman Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .

[88]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[89]  H. Hanßmann Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples , 2006 .

[90]  Jiirgen,et al.  On Elliptic Lower Dimensional Tori in Hamiltonian Systems , 2005 .

[91]  Sergej B. Kuksin,et al.  Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .

[92]  Y. Sinai,et al.  The one-dimensional Schrödinger equation with a quasiperiodic potential , 1975 .

[93]  H. Broer,et al.  Normal linear stability of quasi-periodic tori , 2007 .

[94]  San Vũ Ngoc,et al.  Quantum Monodromy in Integrable Systems , 1999 .

[95]  H. Broer,et al.  A proof of the isoenergetic KAM-theorem from the “ordinary” one , 1991 .

[96]  David Ruelle,et al.  OCCURRENCE OF STRANGE AXIOM A ATTRACTORS NEAR QUASI PERIODIC FLOWS ON TM, M IS GREATER THAN OR EQUAL TO 3 , 1978 .