Quasi-Periodicity in Dissipative and Conservative Systems
暂无分享,去创建一个
[1] Konstantinos Efstathiou,et al. Metamorphoses of Hamiltonian Systems with Symmetries , 2005 .
[2] Nguyen Tien Zung. A note on focus-focus singularities , 1997 .
[3] J. J. Stoker. Nonlinear Vibrations in Mechanical and Electrical Systems , 1950 .
[4] J. Yoccoz. C1-conjugaison des difféomorphismes du cercle , 1983 .
[5] G. Iooss,et al. Quasi-genericity of bifurcations to high dimensional invariant tori for maps , 1988 .
[6] F. Takens,et al. Mixed spectra and rotational symmetry , 1993 .
[7] Henryk Żoł̨dek,et al. Bifurcations of certain family of planar vector fields tangent to axes , 1987 .
[8] Joaquim Puig. Cantor Spectrum for the Almost Mathieu Operator , 2004 .
[9] Robert S. MacKay,et al. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .
[10] J. Palis,et al. Geometric theory of dynamical systems : an introduction , 1984 .
[11] F. Takens. Measure and category , 1988 .
[12] E. Zehnder,et al. Generalized implicit function theorems with applications to some small divisor problems, I , 1976 .
[13] B. Fiedler,et al. Complicated dynamics of scalar reaction diffusion equations with a nonlocal term , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[14] George Huitema,et al. Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .
[15] J. Moser. Combination tones for Duffing's equation , 1965 .
[16] Carles Simó,et al. Resonance Tongues and Instability Pockets in the Quasi–Periodic Hill–Schrödinger Equation , 2003 .
[17] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[18] Sergei Kuksin,et al. Seminar on Dynamical Systems , 1994 .
[19] George Huitema,et al. Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .
[20] L. H. Eliasson,et al. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .
[21] J. Moser. Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics. , 1973 .
[22] F. Takens,et al. Integrable and non-integrable deformations of the skew Hopf bifurcation , 1999 .
[23] H. Broer,et al. On a quasi-periodic Hopf bifurcation , 1987 .
[24] F. Takens. Forced oscillations and bifurcations , 2001 .
[25] M. Bernhard. Introduction to Chaotic Dynamical Systems , 1992 .
[26] R. Thom. Stabilité structurelle et morphogenèse , 1974 .
[27] J. Bricmont. SCIENCE OF CHAOS OR CHAOS IN SCIENCE? , 1995, chao-dyn/9603009.
[28] Richard Cushman,et al. Global Aspects of Classical Integrable Systems , 2004 .
[29] A. Bolsinov. Integrable Hamiltonian Systems with Two Degrees of Freedom , 1997 .
[30] van Aernout Enter. Statistical Mechanics, A Short Treatise , 2000 .
[31] G. Gentile,et al. Field Theory and KAM tori , 1993, chao-dyn/9503006.
[32] Guido Gentile,et al. Aspects of Ergodic, Qualitative and Statistical Theory of Motion , 2004 .
[33] Unfoldings of quasi-periodic tori in reversible systems , 1995 .
[34] V. Arnold. SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .
[35] Angel Jorbayx,et al. On the normal behaviour of partially elliptic lower-dimensional tori of Hamiltonian systems , 1997 .
[36] Cantor Spectrum for the Almost Mathieu Operator. Corollaries of localization,reducibility and duality , 2003, math-ph/0309004.
[37] Luigi Chierchia,et al. Drift and diffusion in phase space , 1994 .
[38] Bob W. Rink. A Cantor set of tori with monodromy near a focus-focus singularity , 2003, nlin/0306058.
[39] Santiago Ibáñez,et al. Singularities of vector fields on , 1998 .
[40] Alain Chenciner,et al. Bifurcations de points fixes elliptiques. II. Orbites periodiques et ensembles de Cantor invariants , 1985 .
[41] Hendrik Broer. Kolmogorov, la 'K' de KAM , 2004 .
[42] J. Moser. On the Theory of Quasiperiodic Motions , 1966 .
[43] M. Ciocci. Bifurication of periodic orbits and persistance of quasi periodic orbits in families of reversible systems , 2004 .
[44] 鈴木 麻美,et al. 「On the Iteration of Analytic Functions」(木村俊房先生の仕事から) , 1998 .
[45] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[46] Rafael de la Llave,et al. A Tutorial on Kam Theory , 2003 .
[47] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[48] F. Wagener. On the quasi-periodic d-fold degenerate bifurcation , 2005 .
[49] Jürgen Pöschel,et al. Integrability of Hamiltonian systems on cantor sets , 1982 .
[50] H. Broer,et al. The quasi-periodic Hamiltonian Hopf bifurcation , 2007 .
[51] P. Blanchard. Complex analytic dynamics on the Riemann sphere , 1984 .
[52] Richard Cushman,et al. Monodromy in the hydrogen atom in crossed fields , 2000 .
[53] Carles Simó,et al. Towards global models near homoclinic tangencies of dissipative diffeomorphisms , 1998 .
[54] Nearly-integrable perturbations of the Lagrange top : applications of KAM-theory , 2006, math/0608255.
[55] Jürgen Moser,et al. Convergent series expansions for quasi-periodic motions , 1967 .
[56] R. Montgomery,et al. The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case , 1988 .
[57] H. Broer. Survey on dissipative KAM theory including quasi-periodic bifurcation theory based on lectures by Henk Broer , 2005 .
[58] Bifurcations of Normally Parabolic Tori in Hamiltonian Systems , 2007 .
[59] E. Hopf. A mathematical example displaying features of turbulence , 1948 .
[60] Floris Takens,et al. Bifurcations and stability of families of diffeomorphisms , 1983 .
[61] F. Takens,et al. On the nature of turbulence , 1971 .
[62] M. Sevryuk. New Results in the Reversible Kam Theory , 1994 .
[63] Jean-Christophe Yoccoz,et al. Analytic linearization of circle diffeomorphisms , 2002 .
[64] J. Guckenheimer,et al. Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos , 1991 .
[65] David Ruelle,et al. Occurrence of Strange Axiom A Attractors Near Quasi Periodic Flows on T m , m ≧ 3 , 1995 .
[66] Helmut Rüßmann. Konvergente Reihenentwicklungen in der Störungstheorie der Himmelsmechanik , 1979 .
[67] Heinz Hanßmann,et al. Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach , 2003 .
[68] E. Zehnder. An implicit function theorem for small divisor problems , 1974 .
[69] J. Moser. On invariant curves of area-preserving mappings of an anulus , 1962 .
[70] A. Roshko. On the problem of turbulence , 2000 .
[71] H. Broer,et al. Umbilical torus bifurcations in Hamiltonian systems , 2006 .
[72] Antti Kupiainen,et al. KAM Theorem and Quantum Field Theory , 1999 .
[73] Florian Wagener,et al. Resonances in skew and reducible quasi-periodic Hopf bifurcations , 2000 .
[74] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[75] V. M. Tikhomirov,et al. The General Theory of Dynamical Systems and Classical Mechanics , 1991 .
[76] Henk W. Broer,et al. The Quasi-Periodic Reversible Hopf bifurcation , 2007, Int. J. Bifurc. Chaos.
[77] H. Bateman. Book Review: Ergebnisse der Mathematik und ihrer Grenzgebiete , 1933 .
[78] H. Hanßmann. The Quasi-Periodic Centre-Saddle Bifurcation , 1998 .
[79] H. Broer. KAM theory: The legacy of Kolmogorov’s 1954 paper , 2004 .
[80] H. Broer,et al. Quasi periodic flow near a codimension one singularity of a divergence free vector field in dimension three , 1981 .
[81] Darryl D. Holm,et al. CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy. , 2004, Physical review letters.
[82] H. Broer,et al. Quasi-Periodic Stability of Subfamilies of an Unfolded Skew Hopf Bifurcation , 2000 .
[83] Alain Chenciner,et al. Bifurcations De Points Fixes Elliptiques , 1985 .
[84] Johannes J. Duistermaat,et al. On global action‐angle coordinates , 1980 .
[85] Hassler Whitney,et al. Differentiable Functions Defined in Closed Sets. I , 1934 .
[86] J. Laskar. Large scale chaos and marginal stability in the solar system , 1996 .
[87] M. R. Herman. Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .
[88] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[89] H. Hanßmann. Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples , 2006 .
[90] Jiirgen,et al. On Elliptic Lower Dimensional Tori in Hamiltonian Systems , 2005 .
[91] Sergej B. Kuksin,et al. Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .
[92] Y. Sinai,et al. The one-dimensional Schrödinger equation with a quasiperiodic potential , 1975 .
[93] H. Broer,et al. Normal linear stability of quasi-periodic tori , 2007 .
[94] San Vũ Ngoc,et al. Quantum Monodromy in Integrable Systems , 1999 .
[95] H. Broer,et al. A proof of the isoenergetic KAM-theorem from the “ordinary” one , 1991 .
[96] David Ruelle,et al. OCCURRENCE OF STRANGE AXIOM A ATTRACTORS NEAR QUASI PERIODIC FLOWS ON TM, M IS GREATER THAN OR EQUAL TO 3 , 1978 .