Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target?

Potassium (K(+)) channels are membrane proteins expressed in most living cells that selectively control the flow of K(+) ions. More than 80 genes encode the K(+) channel subunits in the human genome. The TWIK-related K(+) channel (TREK-1) belongs to the two-pore domain K(+) channels (K2P) and displays various properties including sensitivity to physical (membrane stretch, acidosis, temperature) and chemical stimuli (signaling lipids, volatile anesthetics). The distribution of TREK-1 in the central nervous system, coupled with the physiological consequences of its opening and closing, leads to the emergence of this channel as an attractive therapeutic target. We review the TREK-1 channel, its structural and functional properties, and the pharmacological agents (agonists and antagonists) able to modulate its gating.

[1]  Jacques Noël,et al.  The mechano‐activated K+ channels TRAAK and TREK‐1 control both warm and cold perception , 2009, The EMBO journal.

[2]  G. Debonnel,et al.  Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype , 2006, Nature Neuroscience.

[3]  E. R. Schneider,et al.  Temperature sensitivity of two-pore (K2P) potassium channels. , 2014, Current topics in membranes.

[4]  P. Murdock,et al.  Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. , 2000, Brain research. Molecular brain research.

[5]  G. F. Ruda,et al.  K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac , 2015, Science.

[6]  Qiaoyun Shi,et al.  Novel neuroprotectant chiral 3-n-butylphthalide inhibits tandem-pore-domain potassium channel TREK-1 , 2011, Acta Pharmacologica Sinica.

[7]  M. Lazdunski,et al.  Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. , 1996, The EMBO journal.

[8]  N. Franks,et al.  The TREK K2P channels and their role in general anaesthesia and neuroprotection. , 2004, Trends in pharmacological sciences.

[9]  K. Sugiyama,et al.  Fenamates and diltiazem modulate lipid-sensitive mechano-gated 2P domain K+ channels , 2005, Pflügers Archiv.

[10]  E. Honoré,et al.  The neuronal background K2P channels: focus on TREK1 , 2007, Nature Reviews Neuroscience.

[11]  M. Klein,et al.  The membrane-bound state of K2P potassium channels. , 2010, Journal of the American Chemical Society.

[12]  S. Meuth,et al.  The CNS under pathophysiologic attack—examining the role of K2P channels , 2014, Pflügers Archiv - European Journal of Physiology.

[13]  T. Nayak,et al.  Inhibition of Human Two-Pore Domain K+ Channel TREK1 by Local Anesthetic Lidocaine: Negative Cooperativity and Half-of-Sites Saturation Kinetics , 2009, Molecular Pharmacology.

[14]  T. Bushell,et al.  Two-pore potassium ion channels are inhibited by both Gq/11- and Gi-coupled P2Y receptors , 2010, Molecular and Cellular Neuroscience.

[15]  G. Hervieu,et al.  Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS , 2001, Neuroscience.

[16]  R. Peyronnet,et al.  Multiple modalities converge on a common gate to control K2P channel function , 2011, The EMBO journal.

[17]  M. Lazdunski,et al.  TREK‐1, a K+ channel involved in neuroprotection and general anesthesia , 2004, The EMBO journal.

[18]  C. Heurteaux,et al.  Retroinverso analogs of spadin display increased antidepressant effects , 2014, Psychopharmacology.

[19]  M. Lazdunski,et al.  Inhalational anesthetics activate two-pore-domain background K+ channels , 1999, Nature Neuroscience.

[20]  Jacques Noël,et al.  TREK‐1, a K+ channel involved in polymodal pain perception , 2006, The EMBO journal.

[21]  Craig C. Ulrich,et al.  A role of stretch-activated potassium currents in the regulation of uterine smooth muscle contraction , 2011, Acta Pharmacologica Sinica.

[22]  S. Danthi,et al.  Caffeic acid esters activate TREK-1 potassium channels and inhibit depolarization-dependent secretion. , 2004, Molecular pharmacology.

[23]  A. Eschalier,et al.  Synthesis and structure-activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. , 2014, European journal of medicinal chemistry.

[24]  Vijay Renigunta,et al.  Much more than a leak: structure and function of K2P-channels , 2015, Pflügers Archiv - European Journal of Physiology.

[25]  A. Patel,et al.  Mechano- or Acid Stimulation, Two Interactive Modes of Activation of the TREK-1 Potassium Channel* , 1999, The Journal of Biological Chemistry.

[26]  A. Eschalier,et al.  Activation of TREK-1 by morphine results in analgesia without adverse side effects , 2013, Nature Communications.

[27]  D. Minor,et al.  Metabolic and thermal stimuli control K2P2.1 (TREK-1) through modular sensory and gating domains , 2012, The EMBO journal.

[28]  H. Katus,et al.  Modulation of K2P2.1 and K2P10.1 K+ channel sensitivity to carvedilol by alternative mRNA translation initiation , 2014, British journal of pharmacology.

[29]  A. Wickenden K(+) channels as therapeutic drug targets. , 2002, Pharmacology & therapeutics.

[30]  H. Katus,et al.  Class I antiarrhythmic drugs inhibit human cardiac two-pore-domain K(+) (K2 ₂p) channels. , 2013, European journal of pharmacology.

[31]  P. Murdock,et al.  The neuroprotective agent sipatrigine (BW619C89) potently inhibits the human tandem pore-domain K+ channels TREK-1 and TRAAK , 2001, Brain Research.

[32]  Mapping of human potassium channel genes TREK-1 (KCNK2) and TASK (KCNK3) to chromosomes 1q41 and 2p23. , 1998, Genomics.

[33]  A. Mathie,et al.  Influence of the N Terminus on the Biophysical Properties and Pharmacology of TREK1 Potassium Channels , 2014, Molecular Pharmacology.

[34]  E. Chevet,et al.  Spadin, a Sortilin-Derived Peptide, Targeting Rodent TREK-1 Channels: A New Concept in the Antidepressant Drug Design , 2010, PLoS biology.

[35]  Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain , 2015, Pflügers Archiv - European Journal of Physiology.

[36]  S. Ferroni,et al.  The inhibitor of volume‐regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes , 2013, British journal of pharmacology.

[37]  J. A. Enyeart,et al.  Potent Inhibition of Native TREK-1 K+ Channels by Selected Dihydropyridine Ca2+ Channel Antagonists , 2007, Journal of Pharmacology and Experimental Therapeutics.

[38]  H. Katus,et al.  Inhibition of cardiac two-pore-domain K+ (K2P) channels--an emerging antiarrhythmic concept. , 2014, European journal of pharmacology.

[39]  Markus Rapedius,et al.  The pore structure and gating mechanism of K2P channels , 2011, The EMBO journal.

[40]  M. Lazdunski,et al.  Regulation of the Mechano-Gated K2P Channel TREK-1 by Membrane Phospholipids. , 2007, Current topics in membranes.

[41]  E. Bertaccini,et al.  Molecular Modeling of a Tandem Two Pore Domain Potassium Channel Reveals a Putative Binding Site for General Anesthetics , 2014, ACS chemical neuroscience.

[42]  J. Chumbley,et al.  Inhibition of the human two‐pore domain potassium channel, TREK‐1, by fluoxetine and its metabolite norfluoxetine , 2005, British journal of pharmacology.

[43]  N. Franks,et al.  The role of K2P channels in anaesthesia and sleep , 2014, Pflügers Archiv - European Journal of Physiology.

[44]  D. Lotshaw Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels , 2007, Cell Biochemistry and Biophysics.

[45]  E. Honoré,et al.  Properties and modulation of mammalian 2P domain K+ channels , 2001, Trends in Neurosciences.

[46]  C. Heurteaux,et al.  Targeting two‐pore domain K+ channels TREK‐1 and TASK‐3 for the treatment of depression: a new therapeutic concept , 2015, British journal of pharmacology.

[47]  A. Reboreda,et al.  Activation of TREK Currents by the Neuroprotective Agent Riluzole in Mouse Sympathetic Neurons , 2011, The Journal of Neuroscience.

[48]  A. Patel,et al.  The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. , 2000, Molecular pharmacology.

[49]  C. Yost,et al.  Molecular biology of background K channels: insights from K(2P) knockout mice. , 2009, Journal of molecular biology.

[50]  A. Renslo,et al.  A High-Throughput Functional Screen Identifies Small Molecule Regulators of Temperature- and Mechano-Sensitive K2P Channels , 2013, ACS chemical biology.

[51]  S. Tsai Sipatrigine could have therapeutic potential for major depression and bipolar depression through antagonism of the two-pore-domain K+ channel TREK-1. , 2008, Medical hypotheses.

[52]  Carson C. Chow,et al.  Structural models of TREK channels and their gating mechanism , 2011, Channels.

[53]  M. Lazdunski,et al.  Antipsychotics inhibit TREK but not TRAAK channels. , 2007, Biochemical and biophysical research communications.

[54]  A. Eschalier,et al.  Canaux potassiques TREK-1 : cibles moléculaires pour la découverte de nouveaux antalgiques ? , 2008 .

[55]  D. Minor,et al.  Transmembrane Helix Straightening and Buckling Underlies Activation of Mechanosensitive and Thermosensitive K2P Channels , 2014, Neuron.