MAN: Main-auxiliary network with attentive interactions for review-based recommendation

[1]  Yingyuan Xiao,et al.  SIGA: social influence modeling integrating graph autoencoder for rating prediction , 2022, Applied Intelligence.

[2]  Zhaoli Zhang,et al.  EDMF: Efficient Deep Matrix Factorization With Review Feature Learning for Industrial Recommender System , 2022, IEEE Transactions on Industrial Informatics.

[3]  Bo Du,et al.  Adaptive Hierarchical Attention-Enhanced Gated Network Integrating Reviews for Item Recommendation , 2022, IEEE Transactions on Knowledge and Data Engineering.

[4]  Zhen Liu,et al.  A multi-task dual attention deep recommendation model using ratings and review helpfulness , 2021, Appl. Intell..

[5]  Hongya Wang,et al.  A feature interaction learning approach for crowdfunding project recommendation , 2021, Appl. Soft Comput..

[6]  Zhen Liu,et al.  A multi-task dual attention deep recommendation model using ratings and review helpfulness , 2021, Applied Intelligence.

[7]  Naixue Xiong,et al.  CARM: Confidence-aware recommender model via review representation learning and historical rating behavior in the online platforms , 2021, Neurocomputing.

[8]  Ying Wang,et al.  TAERT: Triple-Attentional Explainable Recommendation with Temporal Convolutional Network , 2021, Inf. Sci..

[9]  Hwanjo Yu,et al.  Learning to utilize auxiliary reviews for recommendation , 2021, Inf. Sci..

[10]  Jon Atle Gulla,et al.  Multilingual Review-aware Deep Recommender System via Aspect-based Sentiment Analysis , 2021, ACM Trans. Inf. Syst..

[11]  Bo Zong,et al.  Asymmetrical Hierarchical Networks with Attentive Interactions for Interpretable Review-Based Recommendation , 2019, AAAI.

[12]  Jun Chang,et al.  DAML: Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation , 2019, KDD.

[13]  Qian Wang,et al.  A Context-Aware User-Item Representation Learning for Item Recommendation , 2017, ACM Trans. Inf. Syst..

[14]  Gerard de Melo,et al.  A Helping Hand: Transfer Learning for Deep Sentiment Analysis , 2018, ACL.

[15]  Yiqun Liu,et al.  Neural Attentional Rating Regression with Review-level Explanations , 2018, WWW.

[16]  Mejari Kumar,et al.  Connecting Social Media to E-Commerce: Cold-Start Product Recommendation using Microblogging Information , 2018 .

[17]  Mohan S. Kankanhalli,et al.  Aspect-Aware Latent Factor Model: Rating Prediction with Ratings and Reviews , 2018, WWW.

[18]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[19]  Siu Cheung Hui,et al.  Multi-Pointer Co-Attention Networks for Recommendation , 2018, KDD.

[20]  Jing Huang,et al.  Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction , 2017, RecSys.

[21]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[22]  William W. Cohen,et al.  TransNets: Learning to Transform for Recommendation , 2017, RecSys.

[23]  Tat-Seng Chua,et al.  Neural Collaborative Filtering , 2017, WWW.

[24]  Lei Zheng,et al.  Joint Deep Modeling of Users and Items Using Reviews for Recommendation , 2017, WSDM.

[25]  Weiwei Liu,et al.  An Easy-to-hard Learning Paradigm for Multiple Classes and Multiple Labels , 2017, J. Mach. Learn. Res..

[26]  Weiwei Liu,et al.  Making Decision Trees Feasible in Ultrahigh Feature and Label Dimensions , 2017, J. Mach. Learn. Res..

[27]  Donghyun Kim,et al.  Convolutional Matrix Factorization for Document Context-Aware Recommendation , 2016, RecSys.

[28]  Dong Yu,et al.  Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features , 2016, KDD.

[29]  Yiqun Liu,et al.  Rating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews , 2016, IJCAI.

[30]  Yan Wang,et al.  Capturing Semantic Correlation for Item Recommendation in Tagging Systems , 2016, AAAI.

[31]  Julian J. McAuley,et al.  Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering , 2016, WWW.

[32]  Aaron C. Courville,et al.  Learning Distributed Representations from Reviews for Collaborative Filtering , 2015, RecSys.

[33]  Michael R. Lyu,et al.  Ratings meet reviews, a combined approach to recommend , 2014, RecSys '14.

[34]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[35]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[36]  Jure Leskovec,et al.  Hidden factors and hidden topics: understanding rating dimensions with review text , 2013, RecSys.