Belemnite-based strontium, carbon and oxygen isotope stratigraphy of the type area of the Maastrichtian Stage*

Abstract Belemnitellid cephalopods from the Maastrichtian stratotype area (southeast Netherlands) are shown to be comparatively well preserved. Although partial diagenetic alteration has been observed, micromilling techniques have permitted the extraction of pristine belemnite calcite, suitable for the reconstruction of strontium (Sr), oxygen (O) and carbon (C) isotope variation of Maastrichtian seawater. A distinct Sr isotope pattern in the Maastricht record can be matched stratigraphically with records from Hemmoor (northern Germany), El Kef (Tunisia) and ODP site 690 (Maud Rise, Antarctica), leading to a new chemostratigraphical age model for the Maastrichtian stratotype section. Our data improve currently applied strontium isotope stratigraphical reference curves by revealing an Sr isotope inflection pattern near the lower/upper Maastrichtian boundary that is a potentially diagnostic feature for intra-Maastrichtian stratigraphical correlation between distant sections. Belemnites further show significant stratigraphical oxygen isotope variation through the Maastrichtian. We interpret this variation to have resulted from palaeoceanographic reorganisations in the Atlantic Ocean during this time interval.

[1]  Stefan Schouten,et al.  TEX86 and stable δ18O paleothermometry of early Cretaceous sediments: Implications for belemnite ecology and paleotemperature proxy application , 2010 .

[2]  N. Keutgen,et al.  Stratigraphy of the upper Vijlen Member (Gulpen Formation; Maastrichtian) in northeast Belgium, the southeast Netherlands and the Aachen area (Germany), with special reference to belemnitellid cephalopods , 2010, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[3]  C. Hemleben,et al.  Early Maastrichtian carbon cycle perturbation and cooling event: Implications from the South Atlantic Ocean , 2009 .

[4]  J. Ogg,et al.  The Concise Geologic Time Scale , 2008 .

[5]  I. Jarvis,et al.  Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma) , 2006, Geological Magazine.

[6]  B. Niebuhr Multistratigraphische Gliederung der norddeutschen Schreibkreide (Coniac bis Maastricht), Korrelation von Aufschlüssen und Bohrungen , 2006 .

[7]  J. Jagt Stratigraphic ranges of mosasaurs in Belgium and the Netherlands (Late Cretaceous) and cephalopod-based correlations with North America , 2005, Netherlands Journal of Geosciences.

[8]  K. Miller,et al.  Toarcian oceanic anoxic event: An assessment of global causes using belemnite C isotope records , 2005 .

[9]  A. Nederbragt,et al.  Modelling oceanic carbon and phosphorus fluxes: implications for the cause of the late Cenomanian Oceanic Anoxic Event (OAE2) , 2004, Journal of the Geological Society.

[10]  P. Rawson,et al.  Belemnites of Valanginian, Hauterivian and Barremian age: Sr-isotope stratigraphy, composition (87Sr/86Sr, δ13C, δ18O, Na, Sr, Mg), and palaeo-oceanography , 2004 .

[11]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2004 .

[12]  E. Keppens,et al.  Faunal/floral and isotopic responses to Milankovitch precession cycles and environmental changes in the upper Gulpen Formation (Upper Maastrichtian) at the CBR-Lixhe and ENCI-Maastricht bv quarries , 2003, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[13]  A. Schulp,et al.  A large new mosasaur from the Upper Cretaceous of The Netherlands , 2002, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[14]  R. Norris,et al.  Deep-sea paleotemperature record of extreme warmth during the Cretaceous , 2002 .

[15]  M. Joachimski,et al.  Stable isotope and trace element geochemistry of Upper Cretaceous carbonates and belemnite rostra (Middle Campanian, north Germany) , 2002 .

[16]  R. Howarth,et al.  Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr‐Isotope Curve for 0–509 Ma and Accompanying Look‐up Table for Deriving Numerical Age , 2001, The Journal of Geology.

[17]  S. Burns,et al.  Paleoceanographic changes during the early Cretaceous (Valanginian-Hauterivian): evidence from oxygen and carbon stable isotopes , 2000 .

[18]  M. Arthur,et al.  Tectonic forcings of Maastrichtian ocean-climate evolution , 1999 .

[19]  R. Howarth,et al.  Strontium isotope profiles across K/T boundary sequences in Denmark and Antarctica , 1998 .

[20]  O. Podlaha,et al.  Preservation of delta 18 O and delta 13 C in belemnite rostra from the Jurassic/Early Cretaceous successions , 1998 .

[21]  C. E. Jones,et al.  Evidence for thermohaline-circulation reversals controlled by sea-level change in the latest Cretaceous , 1997 .

[22]  H. Brinkhuis,et al.  Dinoflagellate biostratigraphy and sequence stratigraphy of the Type Maastrichtian (Upper Cretaceous), ENCI Quarry, The Netherlands , 1997 .

[23]  H. Vonhof,et al.  HIGH-RESOLUTION LATE MAASTRICHTIAN-EARLY DANIAN OCEANIC 87SR/86SR RECORD :IMPLICATIONS FOR CRETACEOUS-TERTIARY BOUNDARY EVENTS , 1997 .

[24]  J. Kenter,et al.  Effects of differential cementation on the sonic velocities of upper cretaceous skeletal grainstones (Southeastern Netherlands) , 1997 .

[25]  K. Macleod,et al.  Strontium isotopic evidence for extensive reworking in sediments spanning the Cretaceous-Tertiary boundary at ODP Site 738 , 1996 .

[26]  A. Gale,et al.  SR ISOTOPE EVOLUTION OF MAASTRICHTIAN SEAWATER, DETERMINED FROM THE CHALK OF HEMMOOR, NW GERMANY , 1995 .

[27]  U. Krähenbühl,et al.  Combined osmium and strontium isotopic study of the Cretaceous-Tertiary boundary at Sumbar, Turkmenistan: A test for an impact vs. a volcanic hypothesis , 1995 .

[28]  K. Miller,et al.  Uppermost Campanian–Maestrichtian strontium isotopic, biostratigraphic, and sequence stratigraphic framework of the New Jersey Coastal Plain , 1995 .

[29]  A. Gale,et al.  Strontium isotope stratigraphy for Late Cretaceous time: Direct numerical calibration of the Sr isotope curve based on the US Western Interior , 1994 .

[30]  A. Gale,et al.  Strontium isotope stratigraphy in the Late Cretaceous: Numerical calibration of the Sr isotope curve and intercontinental correlation for the campanian , 1993 .

[31]  A. Nederbragt Late cretaceous biostratigraphy and development of heterohelicidae planktic foraminifera , 1991 .

[32]  E. Martin,et al.  Seawater Sr isotopes at the Cretaceous/Tertiary boundary , 1991 .

[33]  P. Ward,et al.  Rapid change in strontium isotopic composition of sea water before the Cretaceous/Tertiary boundary , 1991, Nature.

[34]  N. Hamilton Mesozoic Magnetostratigraphy of Maud Rise|Antarctica , 1990 .

[35]  G. Sælen Diagenesis and construction of the belemnite rostrum , 1989 .

[36]  J. Macdougall Seawater Strontium Isotopes, Acid Rain, and the Cretaceous-Tertiary Boundary , 1988, Science.

[37]  S. Clauser Etudes stratigraphiques du Campanien et du Maastrichtien de l'Europe occidentale : Côte Basque, Charentes (France) ; Limbourg (Pays-Bas) : biochronologie, magnétostratigraphie, stratigraphie isotopique, radiochronologie comparées du domaine océanique et des régions stratotypiques : contribution à la , 1988 .

[38]  M. Bender,et al.  Evolution of the Ratio of Strontium-87 to Strontium-86 in Seawater from Cretaceous to Present , 1986, Science.

[39]  P. Doyle,et al.  Atlas of invertebrate macrofossils , 1985 .

[40]  F. Schmid,et al.  Coniacian to Maastrichtian stage boundaries in the standard section for the Upper Cretaceous white chalk of NW Germany (Lagerdorf-Kronsmoor­Hemmoor): Definitions and proposals , 1984, Bulletin of the Geological Society of Denmark.

[41]  W. B. Harland,et al.  A Geological Time Scale , 1983 .

[42]  P. Fritz,et al.  Possible control of post-depositional alteration in oxygen paleotemperature determinations , 1976 .

[43]  Christian Spaeth,et al.  Some Aspects of Isotopic Composition of Belemnites and Related Paleotemperatures , 1971 .

[44]  J. Hofker Die Foraminiferen-Fauna der Gruben Hemmoor und Basbeck , 1961 .

[45]  Donald S. Miller,et al.  The Geological Time-Scale , 1959, Nature.

[46]  S. Epstein,et al.  Paleotemperatures of the Post-Aptian Cretaceous as Determined by the Oxygen Isotope Method , 1954, The Journal of Geology.