Repeated cannabinoid injections into the rat periaqueductal gray enhance subsequent morphine antinociception

[1]  D. Selley,et al.  Low dose combination of morphine and delta9-tetrahydrocannabinol circumvents antinociceptive tolerance and apparent desensitization of receptors. , 2007, European journal of pharmacology.

[2]  P. Meyer,et al.  Analgesic tolerance to microinjection of the μ-opioid agonist DAMGO into the ventrolateral periaqueductal gray , 2007, Neuropharmacology.

[3]  T. Trang,et al.  Involvement of cannabinoid (CB1)-receptors in the development and maintenance of opioid tolerance , 2007, Neuroscience.

[4]  T. Rubino,et al.  Bidirectional regulation of mu‐opioid and CB1‐cannabinoid receptor in rats self‐administering heroin or WIN 55,212‐2 , 2007, The European journal of neuroscience.

[5]  M. Morgan,et al.  PAG mu opioid receptor activation underlies sex differences in morphine antinociception , 2007, Behavioural Brain Research.

[6]  L. Petrocellis,et al.  Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain , 2006, Neuroscience.

[7]  M. Morgan,et al.  Antinociceptive tolerance revealed by cumulative intracranial microinjections of morphine into the periaqueductal gray in the rat , 2006, Pharmacology Biochemistry and Behavior.

[8]  M. Morgan,et al.  Morphine antinociceptive potency on chemical, mechanical, and thermal nociceptive tests in the rat. , 2006, The journal of pain : official journal of the American Pain Society.

[9]  G. Uhl,et al.  Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain , 2006, Brain Research.

[10]  John D. Roberts,et al.  Synergistic affective analgesic interaction between delta-9-tetrahydrocannabinol and morphine. , 2006, European journal of pharmacology.

[11]  M. Morgan,et al.  Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats , 2005, Neuroscience.

[12]  S. Welch,et al.  Enhancement of transdermal fentanyl and buprenorphine antinociception by transdermal delta9-tetrahydrocannabinol. , 2005, European journal of pharmacology.

[13]  M. Morgan,et al.  Intermittent dosing prolongs tolerance to the antinociceptive effect of morphine microinjection into the periaqueductal gray , 2005, Brain Research.

[14]  T. Rubino,et al.  Molecular mechanisms involved in the asymmetric interaction between cannabinoid and opioid systems , 2005, Psychopharmacology.

[15]  J. Crystal,et al.  An endocannabinoid mechanism for stress-induced analgesia , 2005, Nature.

[16]  A. López-Fando,et al.  Activation of μ-Opioid Receptors Transfers Control of Gα Subunits to the Regulator of G-protein Signaling RGS9-2 , 2005, Journal of Biological Chemistry.

[17]  J. Angus,et al.  Synergistic and additive interactions of the cannabinoid agonist CP55,940 with μ opioid receptor and α2‐adrenoceptor agonists in acute pain models in mice , 2005, British journal of pharmacology.

[18]  S. Corey Recent developments in the therapeutic potential of cannabinoids. , 2005, Puerto Rico health sciences journal.

[19]  J. Johansen,et al.  Antinociception and modulation of rostral ventromedial medulla neuronal activity by local microinfusion of a cannabinoid receptor agonist , 2004, Neuroscience.

[20]  M. Morgan,et al.  Behavioral and electrophysiological evidence for tolerance to continuous morphine administration into the ventrolateral periaqueductal gray , 2004, Neuroscience.

[21]  A. Dogrul,et al.  Lack of cross-tolerance to the antinociceptive effects of systemic and topical cannabinoids in morphine-tolerant mice , 2004, Neuroscience Letters.

[22]  D. Finn,et al.  Effects of direct periaqueductal grey administration of a cannabinoid receptor agonist on nociceptive and aversive responses in rats , 2003, Neuropharmacology.

[23]  O. Yildiz,et al.  Topical cannabinoid antinociception: synergy with spinal sites , 2003, Pain.

[24]  O. Yildiz,et al.  Topical cannabinoid enhances topical morphine antinociception , 2003, Pain.

[25]  S. Welch,et al.  Modulation of Oral Morphine Antinociceptive Tolerance and Naloxone-Precipitated Withdrawal Signs by Oral Δ9-Tetrahydrocannabinol , 2003, Journal of Pharmacology and Experimental Therapeutics.

[26]  M. Morgan,et al.  Behavioral evidence linking opioid-sensitive GABAergic neurons in the ventrolateral periaqueductal gray to morphine tolerance , 2003, Neuroscience.

[27]  Erin A. Mccarthy,et al.  Antinociceptive Synergy between Δ9-Tetrahydrocannabinol and Opioids after Oral Administration , 2003, Journal of Pharmacology and Experimental Therapeutics.

[28]  A. Hohmann Spinal and peripheral mechanisms of cannabinoid antinociception: behavioral, neurophysiological and neuroanatomical perspectives. , 2002, Chemistry and physics of lipids.

[29]  Jamie Fong,et al.  Regulation of Opioid Receptor Trafficking and Morphine Tolerance by Receptor Oligomerization , 2002, Cell.

[30]  P. Massi,et al.  Comparative characterization in the rat of the interaction between cannabinoids and opiates for their immunosuppressive and analgesic effects , 2001, Journal of Neuroimmunology.

[31]  B. Roques,et al.  Δ9‐tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect , 2001, The European journal of neuroscience.

[32]  Ronald J. Tallarida,et al.  Drug Synergism and Dose-Effect Data Analysis , 2000 .

[33]  D. Price,et al.  Two distinctive antinociceptive systems in rats with pathological pain , 2000, Neuroscience Letters.

[34]  E. E. Bagley,et al.  Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. , 2000, Molecular pharmacology.

[35]  A. Hohmann,et al.  Intrathecal cannabinoid administration suppresses noxious stimulus-evoked Fos protein-like immunoreactivity in rat spinal cord: comparison with morphine. , 1999, Zhongguo yao li xue bao = Acta pharmacologica Sinica.

[36]  M. Morgan,et al.  Tolerance to the antinociceptive effect of morphine microinjections into the ventral but not lateral-dorsal periaqueductal gray of the rat. , 1999, Behavioral neuroscience.

[37]  A. Hohmann,et al.  The neurobiology of cannabinoid analgesia. , 1999, Life sciences.

[38]  S. Welch,et al.  Enhancement mu opioid antinociception by oral delta9-tetrahydrocannabinol: dose-response analysis and receptor identification. , 1999, The Journal of pharmacology and experimental therapeutics.

[39]  A. Hohmann,et al.  Cannabinoid suppression of noxious heat-evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. , 1999, Journal of neurophysiology.

[40]  K. Mackie,et al.  Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system , 1998, Neuroscience.

[41]  E. E. Bagley,et al.  Enhanced Opioid Efficacy in Opioid Dependence Is Caused by an Altered Signal Transduction Pathway , 1998, The Journal of Neuroscience.

[42]  H. Fields,et al.  An analgesia circuit activated by cannabinoids , 1998, Nature.

[43]  M. Gold,et al.  Immobility and flight associated with antinociception produced by activation of the ventral and lateral/dorsal regions of the rat periaqueductal gray 1 Published on the World Wide Web on 24 July 1998. 1 , 1998, Brain Research.

[44]  S. Welch,et al.  The Enhancement of Morphine Antinociception in Mice by Δ9-Tetrahydrocannabinol , 1998, Pharmacology Biochemistry and Behavior.

[45]  J. Manzanares,et al.  Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. , 1998, Brain research. Molecular brain research.

[46]  J. Walker,et al.  Cannabinoid receptor-mediated inhibition of the rat tail-flick reflex after microinjection into the rostral ventromedial medulla , 1998, Neuroscience Letters.

[47]  P. Massi,et al.  Modulation of rat brain cannabinoid receptors after chronic morphine treatment , 1997, Neuroreport.

[48]  A. Lichtman,et al.  Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement. , 1996, The Journal of pharmacology and experimental therapeutics.

[49]  S. L. Patrick,et al.  An examination of the central sites of action of cannabinoid-induced antinociception in the rat. , 1995, Life sciences.

[50]  H. Bhargava,et al.  Evidence for a bidirectional cross-tolerance between morphine and delta 9-tetrahydrocannabinol in mice. , 1994, European journal of pharmacology.

[51]  S. Welch Blockade of cannabinoid-induced antinociception by norbinaltorphimine, but not N,N-diallyl-tyrosine-Aib-phenylalanine-leucine, ICI 174,864 or naloxone in mice. , 1993, The Journal of pharmacology and experimental therapeutics.

[52]  A. Randich,et al.  Intravenous morphine-induced activation of vagal afferents: peripheral, spinal, and CNS substrates mediating inhibition of spinal nociception and cardiovascular responses. , 1992, Journal of neurophysiology.

[53]  S. Welch,et al.  Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. , 1992, The Journal of pharmacology and experimental therapeutics.

[54]  J. Vanderhaeghen,et al.  Distribution of neuronal cannabinoid receptor in the adult rat brain: A comparative receptor binding radioautography and in situ hybridization histochemistry , 1992, Neuroscience.

[55]  H. Akil,et al.  Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. , 1991, Science.

[56]  R. J. Milne,et al.  Repeated exposure to sham testing procedures reduces reflex withdrawal and hot-plate latencies: Attenuation of tonic descending inhibition? , 1989, Neuroscience Letters.

[57]  C. Advokat,et al.  Tolerance to morphine microinjections in the periaqueductal gray (PAG) induces tolerance to systemic, but not intrathecal morphine , 1987, Brain Research.

[58]  T. Jensen,et al.  I. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat , 1986, Brain Research.

[59]  S. Tsutomu,et al.  Development of physical dependence on and tolerance to morphine in rats treated with morphine-admixed food , 1983, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[60]  P. Mantegazza,et al.  Periaqueductal gray matter involvement in the muscimol-induced decrease of morphine antinociception , 1982, Naunyn-Schmiedeberg's Archives of Pharmacology.

[61]  A. Bloom,et al.  A comparison of some pharmacological actions of morphine and Δ9-tetrahydrocannabinol in the mouse , 1978, Psychopharmacology.

[62]  A. Lajtha,et al.  Paradoxical Effects after Microinjection of Morphine in the Periaqueductal Gray Matter in the Rat , 1974, Science.

[63]  J. Walker,et al.  Cannabinoids and pain. , 2001, Pain research & management.

[64]  A I Basbaum,et al.  Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. , 1984, Annual review of neuroscience.

[65]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .