Modeling Collective Behaviors: A Moment-Based Approach

In this article we introduce an approach for modeling and analyzing collective behavior of a group of agents using moments. We represent the group of agents via their distribution and derive a method to estimate the dynamics of the moments. We use this to predict the evolution of the distribution of agents by first computing the moment trajectories and then use this to reconstruct the distribution of the agents. In the latter an inverse problem is solved in order to reconstruct a nominal distribution and to recover the macroscale properties of the group of agents. The proposed method is applicable for several types of multiagent systems, e.g., leader–follower systems. We derive error bounds for the moment trajectories and describe how to take these error bounds into account for computing the moment dynamics. The convergence of the moment dynamics is also analyzed for cases with monomial moments. To illustrate the theory, two numerical examples are given. In the first we consider a multiagent system with interactions and compare the proposed method for several types of moments. In the second example we apply the framework to a leader–follower problem for modeling a pedestrian crowd.

[1]  Xiaoming Hu,et al.  Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks , 2010, Autom..

[2]  P. Olver Nonlinear Systems , 2013 .

[3]  W. T. Grandy,et al.  Kinetic theory : classical, quantum, and relativistic descriptions , 2003 .

[4]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[5]  Peyman Milanfar,et al.  Reconstructing polygons from moments with connections to array processing , 1995, IEEE Trans. Signal Process..

[6]  Lei Zhang,et al.  Modeling and simulating for congestion pedestrian evacuation with panic , 2015 .

[7]  P. Lions,et al.  Mean field games , 2007 .

[8]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[9]  Yongxin Chen,et al.  State Tracking of Linear Ensembles via Optimal Mass Transport , 2018, IEEE Control Systems Letters.

[10]  C. Chou The Vlasov equations , 1965 .

[11]  Xiaoming Hu,et al.  Optimal pedestrian evacuation using Model Predictive Control , 2013, 2013 European Control Conference (ECC).

[12]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[13]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[14]  Benedetto Piccoli,et al.  Pedestrian flows in bounded domains with obstacles , 2008, 0812.4390.

[15]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[16]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[17]  A. Alivisatos,et al.  Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy , 2004, Nature materials.

[18]  Shuzhi Sam Ge,et al.  New potential functions for mobile robot path planning , 2000, IEEE Trans. Robotics Autom..

[19]  M. Kreĭn,et al.  The Markov Moment Problem and Extremal Problems , 1977 .

[20]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[21]  Dirk Helbing,et al.  Pedestrian, Crowd and Evacuation Dynamics , 2013, Encyclopedia of Complexity and Systems Science.

[22]  João Pedro Hespanha,et al.  Approximate Moment Dynamics for Chemically Reacting Systems , 2011, IEEE Transactions on Automatic Control.

[23]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[24]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[25]  Christian Binek,et al.  Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications , 2011 .

[26]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[27]  Pierre-Emmanuel Jabin,et al.  Mean Field Limit for Stochastic Particle Systems , 2017 .

[28]  A. A. Martynyuk,et al.  Stability of Motion of Nonautonomous Systems (Method of Limiting Equations) , 1996 .

[29]  Peter E. Caines,et al.  Social Optima in Mean Field LQG Control: Centralized and Decentralized Strategies , 2012, IEEE Transactions on Automatic Control.

[30]  J. Bouchaud,et al.  Herd Behavior and Aggregate Fluctuations in Financial Markets , 1997 .

[31]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[32]  H. Wiedemann Particle accelerator physics , 1993 .

[33]  S. Bobkov,et al.  One-dimensional empirical measures, order statistics, and Kantorovich transport distances , 2019, Memoirs of the American Mathematical Society.

[34]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[35]  Johan Karlsson,et al.  The Multidimensional Moment Problem with Complexity Constraint , 2015, 1504.03626.

[36]  Tryphon T. Georgiou,et al.  Optimal Transport Over a Linear Dynamical System , 2015, IEEE Transactions on Automatic Control.

[37]  Mirjam Dür,et al.  Copositive Programming – a Survey , 2010 .

[38]  Roger W. Brockett,et al.  Notes on the Control of the Liouville Equation , 2012 .

[39]  Claudio Altafini,et al.  Predictable Dynamics of Opinion Forming for Networks With Antagonistic Interactions , 2015, IEEE Transactions on Automatic Control.

[40]  Xiaoming Hu,et al.  Design of evacuation strategies with crowd density feedback , 2015, Science China Information Sciences.

[41]  M. Hall,et al.  Copositive and completely positive quadratic forms , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  Xiaoming Hu,et al.  A moment-based approach to modeling collective behaviors , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[43]  Jonathan M. Borwein,et al.  Partially-Finite Programming in L1 and the Existence of Maximum Entropy Estimates , 1993, SIAM J. Optim..

[44]  O. Hernández-Lerma,et al.  THE LINEAR PROGRAMMING APPROACH TO DETERMINISTIC OPTIMAL CONTROL PROBLEMS , 1996 .

[45]  Thomas L. Marzetta,et al.  Power spectral density bounds , 1984, IEEE Trans. Inf. Theory.

[46]  Johan Karlsson,et al.  Uncertainty Bounds for Spectral Estimation , 2012, IEEE Transactions on Automatic Control.

[47]  Vladimir Gaitsgory,et al.  Linear Programming Approach to Deterministic Infinite Horizon Optimal Control Problems with Discounting , 2009, SIAM J. Control. Optim..

[48]  Donald J. Newman,et al.  Approximation of monomials by lower degree polynomials , 1976 .

[49]  Gustaf Söderlind,et al.  On nonlinear difference and differential equations , 1984 .

[50]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[51]  Frank Allgöwer,et al.  Ensemble Observability of Linear Systems , 2015, IEEE Transactions on Automatic Control.

[52]  Sairaj V. Dhople,et al.  Approximate moment dynamics for polynomial and trigonometric stochastic systems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[53]  Johan Karlsson,et al.  Multidimensional Rational Covariance Extension with Approximate Covariance Matching , 2017, SIAM J. Control. Optim..

[54]  M. Burger,et al.  Mean field games with nonlinear mobilities in pedestrian dynamics , 2013, 1304.5201.

[55]  J. Borwein,et al.  Duality relationships for entropy-like minimization problems , 1991 .

[56]  M. Powell,et al.  Approximation theory and methods , 1984 .

[57]  Xiaoming Hu,et al.  Shaping up crowd of agents through controlling their statistical moments , 2015, 2015 European Control Conference (ECC).

[58]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[59]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[60]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[61]  G. Söderlind,et al.  The logarithmic norm. History and modern theory , 2006 .

[62]  N. Akhiezer,et al.  The Classical Moment Problem and Some Related Questions in Analysis , 2020 .

[63]  Xiaoming Hu,et al.  Opinion consensus of modified Hegselmann-Krause models , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[64]  Claudio Altafini,et al.  Minimal eventually positive realizations of externally positive systems , 2016, Autom..

[65]  Anders Rantzer,et al.  Scalable control of positive systems , 2012, Eur. J. Control.

[66]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[67]  R. Liboff,et al.  Introduction to the theory of kinetic equations , 1966 .

[68]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.