Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors

The importance of wind energy has increased at a rapid pace in the last years. As a result, increasing efforts are taken to improve the efficiency and extend the applicability of wind turbines to all suitable locations. Although HAWTs (horizontal axis wind turbines) are clearly the most well-spread, VAWTs (vertical axis wind turbines) show several advantages. In this category, the H-Darrieus configuration is particularly popular.

[1]  Robin Blair Langtry,et al.  A correlation-based transition model using local variables for unstructured parallelized CFD codes , 2011 .

[2]  Derek B. Ingham,et al.  Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine , 2013 .

[3]  Shun Kang,et al.  Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations , 2014 .

[4]  Gunther Brenner,et al.  Analysis of Vertical Axis Wind Turbines , 2010 .

[5]  C. Osorio,et al.  Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine , 2010 .

[6]  Hans Bernhoff,et al.  Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine , 2011 .

[7]  M. H. Mohamed Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines , 2014 .

[8]  Andrzej J. Fiedler,et al.  Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine , 2009 .

[9]  Giovanni Ferrara,et al.  Design guidelines for H-Darrieus wind turbines: Optimization of the annual energy yield , 2015 .

[10]  R. E. Sheldahl,et al.  Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades , 1980 .

[11]  S. Tullis,et al.  Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions Found within the Urban Environment , 2010 .

[12]  Paul M. Weaver,et al.  A novel adaptive blade concept for large-scale wind turbines. Part I: Aeroelastic behaviour , 2014 .

[13]  Giovanni Ferrara,et al.  An Improved Model for the Performance Estimation of an H-Darrieus Wind Turbine in Skewed Flow , 2012 .

[14]  Ahmet Duran Şahin,et al.  Progress and recent trends in wind energy , 2004 .

[15]  Timoleon Kipouros,et al.  Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables , 2014 .

[16]  Carlos Simao Ferreira,et al.  2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine , 2007 .

[17]  Jonathan Winchester,et al.  Torque ripple and variable blade force: A comparison of Darrieus and Gorlov-type turbines for tidal stream energy conversion , 2009 .

[18]  R. Ricci,et al.  Unsteady Aerodynamics of a Savonius wind rotor: a new computational approach for the simulation of energy performance , 2010 .

[19]  Thierry Maître,et al.  Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments , 2013 .

[20]  F. Trivellato,et al.  On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis , 2014 .

[21]  Mats Leijon,et al.  A parameter study of the influence of struts on the performance of a vertical-axis marine current turbine. , 2009 .

[22]  M. H. Mohamed,et al.  Performance investigation of H-rotor Darrieus turbine with new airfoil shapes , 2012 .

[23]  Christopher L. Rumsey,et al.  Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations , 2007 .

[24]  Ernesto Benini,et al.  Optimization of a Darrieus vertical-axis wind turbine using blade element – momentum theory and evolutionary algorithm , 2013 .

[25]  Ernesto Benini,et al.  The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD , 2011 .

[26]  F. Bianchi,et al.  Wind turbine control systems , 2006 .

[27]  R. Templin Aerodynamic performance theory for the NRC vertical-axis wind turbine , 1974 .

[28]  Stefano Mauro,et al.  2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model , 2014 .

[29]  Maria Vahdati,et al.  Dynamic Stall for a Vertical Axis Wind Turbine in a Two-Dimensional Study , 2011 .

[30]  M. H. Mohamed Impacts of solidity and hybrid system in small wind turbines performance , 2013 .

[31]  Paul M. Weaver,et al.  A novel adaptive blade concept for large-scale wind turbines. Part II: Structural design and power performance , 2014 .

[32]  Lin Lu,et al.  Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm , 2014 .

[33]  Ning Qin,et al.  Unsteady Flow Simulation and Dynamic Stall Behaviour of Vertical Axis Wind Turbine Blades , 2011 .

[34]  Tuhfe Göçmen,et al.  Airfoil optimization for noise emission problem and aerodynamic performance criterion on small scale wind turbines , 2012 .

[35]  Gábor Janiga,et al.  Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization , 2014 .

[36]  I. Paraschivoiu,et al.  Double multiple streamtube model with recent improvements , 1983 .

[37]  H. Bijl,et al.  Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data , 2007 .

[38]  Ervin Amet Simulation numérique d'une hydrolienne à axe vertical de type Darrieus , 2009 .

[39]  I. Paraschivoiu Wind turbine design with emphasis on Darrieus concept [ressource électronique] / Ion Paraschivoiu , 2002 .