Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Data Domains

[1]  Peter F. Stadler,et al.  Laplacian Eigenvectors of Graphs , 2007 .

[2]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[3]  Pierre Vandergheynst,et al.  A windowed graph Fourier transform , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[4]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[5]  Yue M. Lu,et al.  Uncertainty principles for signals defined on graphs: Bounds and characterizations , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  Pierre Borgnat,et al.  Multiscale community mining in networks using spectral graph wavelets , 2012, 21st European Signal Processing Conference (EUSIPCO 2013).

[7]  Dimitri Van De Ville,et al.  Wavelet frames on graphs defined by fMRI functional connectivity , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[8]  J. Finley On localisation and uncertainty measures on graphs , 2012 .

[9]  P. Vandergheynst,et al.  Semi-Supervised Learning with Spectral Graph Wavelets , 2011 .

[10]  Pascal Frossard,et al.  Chebyshev polynomial approximation for distributed signal processing , 2011, 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS).

[11]  Sunil K. Narang,et al.  Perfect Reconstruction Two-Channel Wavelet Filter Banks for Graph Structured Data , 2011, IEEE Transactions on Signal Processing.

[12]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[13]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[14]  Moo K. Chung,et al.  Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination , 2012, NIPS.