Anomalous optical properties of bismuth ultrathin film using spectroscopic ellipsometry in the visible - Ultraviolet range

[1]  Yi Du,et al.  Advances in bismuth-based topological quantum materials by scanning tunneling microscopy , 2022, Materials Futures.

[2]  Yongshuai Gong,et al.  Recent Advances in Bismuth‐Based Solar Cells: Fundamentals, Fabrication, and Optimization Strategies , 2022, Advanced Sustainable Systems.

[3]  Hongjian Du,et al.  Electronic and topological properties of Bi(110) ultrathin films grown on a Cu(111) substrate , 2022, Physical Review B.

[4]  M. A. Majidi,et al.  Unravelling strong electronic interlayer and intralayer correlations in a transition metal dichalcogenide , 2021, Nature Communications.

[5]  Baohua Li,et al.  Recent progress and challenges on the bismuth-based anode for sodium-ion batteries and potassium-ion batteries , 2021 .

[6]  K. Nielsch,et al.  Effect of Powder ALD Interface Modification on the Thermoelectric Performance of Bismuth , 2021, Advanced Materials Technologies.

[7]  G. Gu,et al.  Quantum Size Effects, Multiple Dirac Cones, and Edge States in Ultrathin Bi(110) Films. , 2021, ACS applied materials & interfaces.

[8]  L. Fekete,et al.  Analysis of thickness-dependent electron transport in magnetron sputtered ZrN films by spectroscopic ellipsometry , 2021 .

[9]  S. Fahy,et al.  Electronic properties of bismuth nanostructures , 2021, Physical Review B.

[10]  E. Suharyadi,et al.  A compact, modular, multi-wavelength (200–850nm) rotating-analyzer ellipsometer for optical constant characterization of nanostructured materials , 2020, European Journal of Physics.

[11]  T. Chen,et al.  Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film , 2020 .

[12]  Yi Du,et al.  Progress and perspectives of bismuth oxyhalides in catalytic applications , 2020 .

[13]  E. Suharyadi,et al.  Simple and Low-Cost Rotating Analyzer Ellipsometer (RAE) for Wavelength Dependent Optical Constant Characterization of Novel Materials , 2020 .

[14]  J. Martínez‐Pastor,et al.  Enhanced Nonlinear Optical Coefficients of MAPbI3 Thin Films by Bismuth Doping. , 2020, The journal of physical chemistry letters.

[15]  A. R. T. Nugraha,et al.  Confinement Effect in Thermoelectric Properties of Two–Dimensional Materials , 2020, MRS Advances.

[16]  Hua-ming Li,et al.  Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications , 2019, Journal of Materials Chemistry A.

[17]  A. Álvarez-Herrero,et al.  Ellipsometric characterization of Bi and Al2O3 coatings for plasmon excitation in an optical fiber sensor , 2019, Journal of Vacuum Science & Technology B.

[18]  Claire Deeb,et al.  Optical properties of bismuth nanostructures towards the ultrathin film regime , 2019, Optical Materials Express.

[19]  Tao Yang,et al.  Study of nanostructural bismuth oxide films prepared by radio frequency reactive magnetron sputtering , 2018, Applied Surface Science.

[20]  T. Chiang,et al.  Survey of electronic structure of Bi and Sb thin films by first-principles calculations and photoemission measurements , 2017, Journal of Physics and Chemistry of Solids.

[21]  Yongli Gao,et al.  Structural and electronic properties of atomically thin Bismuth on Au(111) , 2019, Surface Science.

[22]  F. Cunha,et al.  The effect of thickness on optical, structural and growth mechanism of ZnO thin film prepared by magnetron sputtering , 2018, Thin Solid Films.

[23]  A. Marty,et al.  Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films , 2018, Physical Review B.

[24]  Rongjun Zhang,et al.  Ellipsometric study on temperature dependent optical properties of topological bismuth film , 2017 .

[25]  F. Ishii,et al.  First-principles study of spin texture and Fermi lines in Bi(111) multi-layer nanofilm , 2017, 1703.08287.

[26]  T. Ezquerra,et al.  Unveiling the Far Infrared-to-Ultraviolet Optical Properties of Bismuth for Applications in Plasmonics and Nanophotonics , 2017 .

[27]  H. Ishida Decay length of surface-state wave functions on Bi(1 1 1) , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  O. Prakash,et al.  Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure , 2016, Science.

[29]  J. Alvarez-Chavez,et al.  Photomechanical Ablation of 304L Stainless Steel, Aluminum Oxide (Al 2 O 3 ) Thin Film, and Pure Silicon , 2016 .

[30]  J. Toudert,et al.  Ultraviolet-visible interband plasmonics with p-block elements , 2016 .

[31]  T. Iimori,et al.  Proving Nontrivial Topology of Pure Bismuth by Quantum Confinement. , 2016, Physical review letters.

[32]  Jinlong Yang,et al.  Surface Landau levels and spin states in bismuth (111) ultrathin films , 2016, Nature Communications.

[33]  Alexander Cuadrado,et al.  Polaritonic-to-Plasmonic Transition in Optically Resonant Bismuth Nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters , 2015, IEEE Photonics Journal.

[34]  T. Hirahara The Rashba and quantum size effects in ultrathin Bi films , 2015 .

[35]  Christoph Friedrich,et al.  Electronic phase transitions of bismuth under strain from relativistic self-consistent G W calculations , 2015, 1503.04050.

[36]  Jens Martin,et al.  Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). , 2015, Nano letters.

[37]  Ji Feng,et al.  Edge engineering of a topological Bi(111) bilayer , 2014, 1403.0147.

[38]  N. Zheludev,et al.  Ultraviolet and visible range plasmonics of a topological insulator , 2014 .

[39]  J. Toudert,et al.  Exploring the Optical Potential of Nano-Bismuth: Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range , 2012 .

[40]  R. Cava,et al.  Optical Conductivity of Bismuth-Based Topological Insulators , 2012, 1201.5609.

[41]  G. Bihlmayer,et al.  Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3. , 2011, Physical review letters.

[42]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[43]  S. G. Lyubchenko,et al.  Semimetal–semiconductor transition in thin Bi films , 2008 .

[44]  Gustav Bihlmayer,et al.  First-principles investigation of structural and electronic properties of ultrathin Bi films , 2008 .

[45]  L. Forró,et al.  Charge carrier interaction with a purely electronic collective mode: plasmarons and the infrared response of elemental bismuth. , 2007, Physical review letters.

[46]  Shuichi Murakami,et al.  Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. , 2006, Physical review letters.

[47]  Jongk‐Kuk Kim,et al.  Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering , 2006 .

[48]  P. Hofmann,et al.  The surfaces of bismuth: Structural and electronic properties , 2006 .

[49]  A.B.Kuzmenko Kramers-Kronig constrained variational analysis of optical spectra , 2005, cond-mat/0503565.

[50]  Taisuke Ozaki,et al.  Numerical atomic basis orbitals from H to Kr , 2004 .

[51]  Taisuke Ozaki,et al.  Variationally optimized atomic orbitals for large-scale electronic structures , 2003 .

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  Hoffman,et al.  Reply to "Comment on 'Semimetal-to-semiconductor transition in bismuth thin films' " , 1995, Physical review. B, Condensed matter.

[54]  Micklitz,et al.  Superconductivity in granular systems built from well-defined rhombohedral Bi-clusters: Evidence for Bi-surface superconductivity. , 1991, Physical review letters.

[55]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[56]  X. Gonze,et al.  First-principles study of As, Sb, and Bi electronic properties. , 1990, Physical review. B, Condensed matter.

[57]  J. Issi Low-temperature Transport-properties of the Group-v Semimetals , 1979 .