Calcium-induced release of calcium regulates differentiation of cultured spinal neurons

[1]  T. Deerinck,et al.  Foot protein isoforms are expressed at different times during embryonic chick skeletal muscle development , 1991, The Journal of cell biology.

[2]  S. Kater,et al.  Calcium ion distribution in nascent pioneer axons and coupled preaxonogenesis neurons in situ , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Sanjiv V. Bhave,et al.  Stimulated rise in neuronal calcium is faster and greater in the nucleus than the cytosol , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  L. Garcia-Segura,et al.  Estradiol increases the number of nuclear pores in the arcuate neurons of the rat hypothalamus , 1991, The Journal of comparative neurology.

[5]  S. Snyder,et al.  Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain. , 1990, Biochemical and biophysical research communications.

[6]  M. Matzke,et al.  Detection of a large cation‐selective channel in nuclear envelopes of avian erythrocytes , 1990, FEBS letters.

[7]  N. Spitzer,et al.  Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. , 1990, Developmental biology.

[8]  S. Snyder,et al.  Rat brain endoplasmic reticulum calcium pools are anatomically and functionally segregated. , 1990, Cell regulation.

[9]  R. Miller,et al.  Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro. , 1990, The Journal of physiology.

[10]  J. F. Chen,et al.  Ontogenetic development of calmodulin mRNA in rat brain using in situ hybridization histochemistry. , 1990, Brain research. Developmental brain research.

[11]  A. J. Williams,et al.  Mechanisms of caffeine activation of single calcium‐release channels of sheep cardiac sarcoplasmic reticulum. , 1990, The Journal of physiology.

[12]  L. DeFelice,et al.  Ion channels in the nuclear envelope , 1990, Nature.

[13]  P. Adams,et al.  Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron. , 1990, Science.

[14]  D. Guidolin,et al.  Ca2+ channels and intracellular Ca2+ stores in neuronal and neuroendocrine cells. , 1990, Cell calcium.

[15]  S. Finkbeiner,et al.  Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. , 1990, Science.

[16]  M. Weber,et al.  The role of Ca2+ channels of the L-type in neurotransmitter plasticity of cultured sympathetic neurons. , 1989, Brain research. Molecular brain research.

[17]  S. Orrenius,et al.  2,5-Di-(tert-butyl)-1,4-benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. , 1989, The Journal of biological chemistry.

[18]  T. Sears,et al.  Organelle changes in cat thoracic α- and γ-motoneurons following axotomy , 1989, Brain Research.

[19]  G. Blobel,et al.  Primary structure analysis of an integral membrane glycoprotein of the nuclear pore , 1989, The Journal of cell biology.

[20]  R Y Tsien,et al.  Photochemically generated cytosolic calcium pulses and their detection by fluo-3. , 1989, The Journal of biological chemistry.

[21]  R. Tsien,et al.  Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. , 1989, The Journal of biological chemistry.

[22]  H. Scheich,et al.  Postnatal development of parvalbumin-, calbindin- and adult GABA-immunoreactivity in two visual nuclei of zebra finches , 1988, Brain Research.

[23]  R. Tsien,et al.  Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons , 1988, Neuron.

[24]  A B Ribera,et al.  Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  S. Orrenius,et al.  2,5‐Di(tert‐butyl)‐1,4‐benzohydroquinone — a novel inhibitor of liver microsomal Ca2+ sequestration , 1987, FEBS letters.

[26]  S. Kater,et al.  Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  N. Spitzer,et al.  Both barium and calcium activate neuronal potassium currents. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Brandl,et al.  Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. , 1987, The Journal of biological chemistry.

[29]  U. Seedorf,et al.  Neural control of gene expression in skeletal muscle. Calcium-sequestering proteins in developing and chronically stimulated rabbit skeletal muscles. , 1986, The Biochemical journal.

[30]  N. Spitzer,et al.  The absence of calcium blocks impulse-evoked release of acetylcholine but not de novo formation of functional neuromuscular synaptic contacts in culture , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  J. Bixby,et al.  Early differentiation of vertebrate spinal neurons in the absence of voltage-dependent Ca2+ and Na+ influx. , 1984, Developmental biology.

[32]  H. Rasmussen,et al.  Calcium messenger system: an integrated view. , 1984, Physiological reviews.

[33]  P. Patterson,et al.  On the role of Ca2+ in the transmitter choice made by cultured sympathetic neurons , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  N. Spitzer,et al.  Ultrastructural development of Rohon‐Beard neurons: Loss of intramitochondrial granules parallels loss of calcium action potentials , 1979, The Journal of comparative neurology.

[35]  N. Spitzer,et al.  Developmental changes in the inward current of the action potential of Rohon‐Beard neurones , 1977, The Journal of physiology.

[36]  N. Spitzer,et al.  The development of the action potential mechanism of amphibian neurons isolated in culture. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Orrenius,et al.  ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Sears,et al.  Organelle changes in cat thoracic alpha- and gamma-motoneurons following axotomy. , 1989, Brain research.

[39]  F. Ghishan,et al.  Active calcium transport by intestinal endoplasmic reticulum during maturation. , 1988, The American journal of physiology.

[40]  J. Newport,et al.  The nucleus: structure, function, and dynamics. , 1987, Annual review of biochemistry.

[41]  J. Potter,et al.  The Regulation of Free Ca2+ Ion Concentration by Metal Chelators , 1984 .

[42]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..