Planning with Qualitative Temporal Preferences

In this paper, we address the problem of specifying and generating preferred plans using rich, qualitative user preferences. We propose a logical language for specifying non-Markovian preferences over the evolution of states and actions associated with a plan. The semantics for our first-order preference language is defined in the situation calculus. Unlike other recent temporal preference languages, our preferences are qualitative rather than just ordinal, affording greater expressivity and less incomparability. We propose an approach to computing preferred plans via bounded best-first search in a forward-chaining planner. Key components of our approach are the exploitation of progression to efficiently evaluate levels of preference satisfaction over partial plans, and development of an admissible evaluation function that establishes the optimality of best-first search. We have implemented our planner PPLAN and evaluated it experimentally. Our preference language and planning approach is amenable to integration with several existing planners, and beyond planning, can be used to support arbitrary dynamical reasoning tasks involving preferences.

[1]  Ronen I. Brafman,et al.  Planning with Goal Preferences and Constraints , 2005, ICAPS.

[2]  Wolfgang Faber,et al.  Answer Set Planning under Action Costs , 2002, JELIA.

[3]  Hans Tompits,et al.  Domain-Specific Preferences for Causal Reasoning and Planning , 2004, ICAPS.

[4]  Craig Boutilier,et al.  CP-nets: a tool for represent-ing and reasoning with conditional ceteris paribus state-ments , 2004 .

[5]  Salem Benferhat,et al.  Qualitative choice logic , 2004, Artif. Intell..

[6]  Didier Dubois,et al.  Towards a Possibilistic Logic Handling of Preferences , 1999, Applied Intelligence.

[7]  Patrick Doherty,et al.  TALplanner: A temporal logic based forward chaining planner , 2001, Annals of Mathematics and Artificial Intelligence.

[8]  Enrico Pontelli,et al.  Planning with Preferences Using Logic Programming , 2004, LPNMR.

[9]  Jérôme Lang,et al.  Expressive Power and Succinctness of Propositional Languages for Preference Representation , 2004, KR.

[10]  Peter Haddawy,et al.  Representations for Decision-Theoretic Planning: Utility Functions for Deadline Goals , 1992, KR.

[11]  Neil Yorke-Smith,et al.  Temporal Reasoning with Preferences and Uncertainty , 2003, IJCAI.

[12]  Sheila A. McIlraith,et al.  Decision-Theoretic GOLOG with Qualitative Preferences , 2006, KR.

[13]  Alfredo Gabaldon,et al.  Precondition Control and the Progression Algorithm , 2004, ICAPS.

[14]  Tran Cao Son,et al.  Adapting Golog for Composition of Semantic Web Services , 2002, KR.

[15]  Didier Dubois,et al.  Proceedings of the Ninth International Conference on Principles of Knowledge Representation and Reasoning , 2004 .

[16]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[17]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[18]  Derek Long,et al.  Plan Constraints and Preferences in PDDL3 , 2006 .

[19]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[20]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[21]  Karen L. Myers,et al.  Generating qualitatively Different Plans througt Metatheoretic Biases , 1999, AAAI/IAAI.

[22]  Jorge A. Baier,et al.  Planning with Preferences , 2008, AI Mag..

[23]  Gerhard Brewka,et al.  Complex Preferences for Answer Set Optimization , 2004, KR.