On the Optimal Management of Public Debt: a Singular Stochastic Control Problem

Consider the problem of a government that wants to reduce the debt-to-GDP (gross domestic product) ratio of a country. The government aims at choosing a debt reduction policy which minimises the total expected cost of having debt, plus the total expected cost of interventions on the debt ratio. We model this problem as a singular stochastic control problem over an infinite time-horizon. In a general not necessarily Markovian framework, we first show by probabilistic arguments that the optimal debt reduction policy can be expressed in terms of the optimal stopping rule of an auxiliary optimal stopping problem. We then exploit such link to characterise the optimal control in a two-dimensional Markovian setting in which the state variables are the level of the debt-to-GDP ratio and the current inflation rate of the country. The latter follows uncontrolled Ornstein-Uhlenbeck dynamics and affects the growth rate of the debt ratio. We show that it is optimal for the government to adopt a policy that keeps the debt-to-GDP ratio under an inflation-dependent ceiling. This curve is given in terms of the solution of a nonlinear integral equation arising in the study of a fully two-dimensional optimal stopping problem.

[1]  G. Micula,et al.  Numerical Treatment of the Integral Equations , 1999 .

[2]  Manmohan S. Kumar,et al.  Public Debt and Growth , 2010, SSRN Electronic Journal.

[3]  Tiziano De Angelis,et al.  A Note on the Continuity of Free-Boundaries in Finite-Horizon Optimal Stopping Problems for One-Dimensional Diffusions , 2013, SIAM J. Control. Optim..

[4]  Ioannis Karatzas,et al.  Irreversible investment and industry equilibrium , 1996, Finance Stochastics.

[5]  Albert N. Shiryaev,et al.  Optimal Stopping Rules , 2011, International Encyclopedia of Statistical Science.

[6]  David M. Kreps,et al.  On Intertemporal Preferences in Continuous Time: The Case of Certainty , 2015 .

[7]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[8]  Ulrich G. Haussmann,et al.  The Free Boundary of the Monotone Follower , 1994 .

[9]  Xin Guo,et al.  Connections between Singular Control and Optimal Switching , 2007, SIAM J. Control. Optim..

[10]  Frank Riedel,et al.  Optimal consumption choice with intertemporal substitution , 2001 .

[11]  Alain Bensoussan,et al.  Applications of Variational Inequalities in Stochastic Control , 1982 .

[12]  Salvatore Federico,et al.  Optimal Boundary Surface for Irreversible Investment with Stochastic Costs , 2014, Math. Oper. Res..

[13]  Savas Dayanik,et al.  Optimal Stopping of Linear Diffusions with Random Discounting , 2008, Math. Oper. Res..

[14]  I. Karatzas,et al.  A new approach to the skorohod problem, and its applications , 1991 .

[15]  Kenneth S. Rogoff,et al.  Growth in a Time of Debt , 2010 .

[16]  Mihail Zervos,et al.  A Model for Reversible Investment Capacity Expansion , 2007, SIAM J. Control. Optim..

[17]  Michael I. Taksar,et al.  Optimal correction problem of a multidimensional stochastic system , 1989, Autom..

[18]  Ioannis Karatzas,et al.  The monotone follower problem in stochastic decision theory , 1981 .

[19]  Charles Wyplosz Fiscal Policy: Institutions versus Rules , 2002, National Institute Economic Review.

[20]  S. Shreve An Introduction to Singular Stochastic Control , 1988 .

[21]  M. Kohlmann,et al.  Connections between optimal stopping and singular stochastic control , 1998 .

[22]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[23]  P. Moerbeke On optimal stopping and free boundary problems , 1973, Advances in Applied Probability.

[24]  P. Chow,et al.  Regularity of the Free Boundary in Singular Stochastic Control , 1994 .

[25]  E. Prescott,et al.  Investment Under Uncertainty , 1971 .

[26]  Abel Cadenillas,et al.  Explicit formula for the optimal government debt ceiling , 2016, Ann. Oper. Res..

[27]  Abel Cadenillas,et al.  Government Debt Control: Optimal Currency Portfolio and Payments , 2015, Oper. Res..

[28]  S. Jacka,et al.  Local Times, Optimal Stopping and Semimartingales , 1993 .

[29]  S. Fischer,et al.  Lectures on Macroeconomics , 1972 .

[30]  S. Shreve,et al.  Connections between Optimal Stopping and Singular Stochastic Control I. Monotone Follower Problems , 1984 .

[31]  A. Lachal Quelques martingales associées à l'intégrale du processus d'ornstein- uhlenbeck. application à l'étude despremiers instants d'atteinte , 1996 .

[32]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[33]  Chi-Fu Huang,et al.  Optimal Consumption and Portfolio Rules: With Durability and Local Substitution , 2015 .

[34]  I. Fisher Appreciation and interest , 1896 .

[35]  P. Salminen,et al.  On optimal stopping of multidimensional diffusions , 2016, Stochastic Processes and their Applications.

[36]  Xia Su,et al.  On irreversible investment , 2006, Finance Stochastics.

[37]  H. Soner,et al.  Regularity of the value function for a two-dimensional singular stochastic control problem , 1989 .

[38]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .

[39]  G. Peskir,et al.  Quickest detection problems for Bessel processes , 2017 .

[40]  Mean Reversion of Inflation Rates: Evidence from 13 OECD Countries , 2001 .

[41]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[42]  Giorgio Ferrari,et al.  On an Integral Equation for the Free Boundary of Stochastic, Irreversible Investment Problems , 2012 .

[43]  Huyên Pham,et al.  Characterization of the Optimal Boundaries in Reversible Investment Problems , 2012, SIAM J. Control. Optim..

[44]  Giorgio Ferrari,et al.  Generalized Kuhn-Tucker Conditions for N-Firm Stochastic Irreversible Investment under Limited Resources , 2012, SIAM J. Control. Optim..

[45]  Ulrich G. Haussmann,et al.  Controlling Inflation: The Infinite Horizon Case , 2000 .