One characteristic of multiphase lattice Boltzmann equation (LBE) methods is that the interfacial region has a finite (i.e., noninfinitesimal) thickness known as a diffuse interface. In simulations of, e.g., bubble or drop dynamics, for problems involving nonideal gases, one frequently observes that the diffuse interface method produces a spontaneous, nonphysical shrinkage of the bubble or drop radius. In this paper, we analyze in detail a single-fluid two-phase model and use a LBE model for nonideal gases in order to explain this fundamental problem. For simplicity, we only investigate the static bubble or droplet problem. We find that the method indeed produces a density shift, bubble or droplet shrinkage, as well as a critical radius below which the bubble or droplet eventually vanishes. Assuming that the ratio between the interface thickness D and the initial bubble or droplet radius r0 is small, we analytically show the existence of this density shift, bubble or droplet radius shrinkage, and critical bubble or droplet survival radius. Numerical results confirm our analysis. We also consider droplets on a solid surface with different curvatures, contact angles, and initial droplet volumes. Numerical results show that the curvature, contact angle, and the initial droplet volume have an effect on this spontaneous shrinkage process, consistent with the survival criterion.