Equivalence between a time-fractional and an integer-order gradient flow: The memory effect reflected in the energy

Time-fractional partial differential equations are nonlocal in time and show an innate memory effect. In this work, we propose an augmented energy functional which includes the history of the solution. Further, we prove the equivalence of a time-fractional gradient flow problem to an integer-order one based on our new energy. This equivalence guarantees the dissipating character of the augmented energy. The state function of the integerorder gradient flow acts on an extended domain similar to the Caffarelli–Silvestre extension for the fractional Laplacian. Additionally, we apply a numerical scheme for solving time-fractional gradient flows, which is based on kernel compressing methods. We illustrate the behavior of the original and augmented energy in the case of the Ginzburg–Landau energy functional.

[1]  Rico Zacher,et al.  Bounded weak solutions of time-fractional porous medium type and more general nonlinear and degenerate evolutionary integro-differential equations , 2020, Journal of Mathematical Analysis and Applications.

[2]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[3]  Zhimin Zhang,et al.  Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.

[4]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[5]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[6]  Rico Zacher,et al.  Lyapunov functions and convergence to steady state for differential equations of fractional order , 2008 .

[7]  Hong Wang,et al.  A fast Galerkin finite element method for a space-time fractional Allen-Cahn equation , 2020, J. Comput. Appl. Math..

[8]  C. Lubich,et al.  On the Stability of Linear Multistep Methods for Volterra Convolution Equations , 1983 .

[9]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[10]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[11]  Yuezheng Gong,et al.  Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint , 2019, Commun. Nonlinear Sci. Numer. Simul..

[12]  Masahiro Yamamoto,et al.  Time-Fractional Differential Equations , 2020 .

[13]  Daniel Baffet,et al.  A Gauss–Jacobi Kernel Compression Scheme for Fractional Differential Equations , 2018, J. Sci. Comput..

[14]  Kai Diethelm,et al.  An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives , 2008, Numerical Algorithms.

[15]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[16]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[17]  Robert J. Marks,et al.  Differintegral interpolation from a bandlimited signal's samples , 1981 .

[18]  Barbara Wohlmuth,et al.  Solving time-fractional differential equation via rational approximation , 2021, ArXiv.

[19]  Alan D. Freed,et al.  On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity , 1999 .

[20]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[21]  Alain Miranville,et al.  The Cahn–Hilliard Equation: Recent Advances and Applications , 2019 .

[22]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[23]  Vincent Giovangigli,et al.  A threshold phenomenon in the propagation of a point source initiated flame , 1998 .

[24]  Waixiang Cao,et al.  An accurate and efficient algorithm for the time-fractional molecular beam epitaxy model with slope selection , 2019, Comput. Phys. Commun..

[25]  Jing-Rebecca Li,et al.  A Fast Time Stepping Method for Evaluating Fractional Integrals , 2009, SIAM J. Sci. Comput..

[26]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[27]  W. E. Olmstead,et al.  Diffusion in a Semi-Infinite Region with Nonlinear Surface Dissipation , 1976 .

[28]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[29]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[30]  Qiang Du,et al.  Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods , 2019, Journal of Scientific Computing.

[31]  E. Cuesta,et al.  Some Advances on Image Processing by Means of Fractional Calculus , 2011 .

[32]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[33]  Adrien Blanchet,et al.  A GRADIENT FLOW APPROACH TO THE KELLER-SEGEL SYSTEMS (Progress in Variational Problems : Variational Problems Interacting with Probability Theories) , 2013 .

[34]  K ASSEM,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[35]  Daniel Baffet,et al.  A Kernel Compression Scheme for Fractional Differential Equations , 2017, SIAM J. Numer. Anal..

[36]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[37]  A. Katchalsky,et al.  The Frictional Coefficients of the Flows of Non-Electrolytes Through Artificial Membranes , 1963, The Journal of general physiology.

[38]  Ricardo H. Nochetto,et al.  Numerical methods for fractional diffusion , 2017, Comput. Vis. Sci..

[39]  S. Molchanov,et al.  Symmetric Stable Processes as Traces of Degenerate Diffusion Processes , 1969 .

[40]  B. West Fractional Calculus in Bioengineering , 2007 .

[41]  Lehel Banjai,et al.  Efficient high order algorithms for fractional integrals and fractional differential equations , 2018, Numerische Mathematik.

[42]  Martin Stynes,et al.  Good (and Not So Good) Practices in Computational Methods for Fractional Calculus , 2020, Mathematics.

[43]  Maohua Ran,et al.  An implicit difference scheme for the time-fractional Cahn-Hilliard equations , 2021, Math. Comput. Simul..

[44]  Lloyd N. Trefethen,et al.  The AAA Algorithm for Rational Approximation , 2016, SIAM J. Sci. Comput..

[45]  van der Kg Kristoffer Zee,et al.  Stabilized second‐order convex splitting schemes for Cahn–Hilliard models with application to diffuse‐interface tumor‐growth models , 2014, International journal for numerical methods in biomedical engineering.

[46]  T. Tang,et al.  Numerical Energy Dissipation for Time-Fractional Phase-Field Equations , 2020, Communications on Pure and Applied Analysis.

[47]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[48]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[49]  J. Diestel,et al.  On vector measures , 1974 .

[50]  Hui Zhang,et al.  A high-efficiency second-order numerical scheme for time-fractional phase field models by using extended SAV method , 2020, Nonlinear Dynamics.

[51]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[52]  T. Tang,et al.  How to Define Dissipation-Preserving Energy for Time-Fractional Phase-Field Equations , 2020, CSIAM Transactions on Applied Mathematics.

[53]  Reyad El-Khazali,et al.  Fractional-order dynamical models of love , 2007 .

[54]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[55]  Jia Zhao,et al.  A Non-uniform Time-stepping Convex Splitting Scheme for the Time-fractional Cahn-Hilliard Equation , 2020, Comput. Math. Appl..

[56]  Sunil Kumar,et al.  A new analysis for the Keller-Segel model of fractional order , 2017, Numerical Algorithms.

[57]  Vidar Thomée,et al.  Time discretization via Laplace transformation of an integro-differential equation of parabolic type , 2006, Numerische Mathematik.

[58]  Galerkin method for time fractional semilinear equations , 2021, Fractional Calculus and Applied Analysis.

[59]  Laid Djilali,et al.  Galerkin method for time fractional diffusion equations , 2018, Journal of Elliptic and Parabolic Equations.

[60]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[61]  Jian-Guo Liu,et al.  Some Compactness Criteria for Weak Solutions of Time Fractional PDEs , 2017, SIAM J. Math. Anal..

[62]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[63]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[64]  Chengjian Zhang,et al.  Fast IMEX Time Integration of Nonlinear Stiff Fractional Differential Equations , 2019, ArXiv.

[65]  Manh Hong Duong,et al.  Wasserstein Gradient Flow Formulation of the Time-Fractional Fokker-Planck Equation , 2019, Communications in Mathematical Sciences.

[66]  C. Lubich Discretized fractional calculus , 1986 .

[67]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[68]  A. Atangana,et al.  Numerical Methods for Fractional Differentiation , 2019, Springer Series in Computational Mathematics.

[69]  Rico Zacher Weak Solutions of Abstract Evolutionary Integro-Differential Equations in Hilbert Spaces , 2009 .

[70]  Vicente Vergara CONVERGENCE TO STEADY STATE FOR A PHASE FIELD SYSTEM WITH MEMORY , 2006 .

[71]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[72]  Rui Du,et al.  Lattice Boltzmann method for fractional Cahn-Hilliard equation , 2020, Commun. Nonlinear Sci. Numer. Simul..

[73]  Tao Zhou,et al.  On Energy Dissipation Theory and Numerical Stability for Time-Fractional Phase-Field Equations , 2018, SIAM J. Sci. Comput..

[74]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[75]  Ian W. Turner,et al.  A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators , 2017, J. Sci. Comput..

[76]  Ricardo H. Nochetto,et al.  Tensor FEM for Spectral Fractional Diffusion , 2017, Foundations of Computational Mathematics.

[77]  Mohsen Zayernouri,et al.  Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system , 2016, J. Comput. Phys..

[78]  Jianying Yang,et al.  Dynamical models of happiness with fractional order , 2010 .

[79]  Barbara Wohlmuth,et al.  On a subdiffusive tumour growth model with fractional time derivative , 2021, IMA Journal of Applied Mathematics.

[80]  Hong-lin Liao,et al.  Simple maximum principle preserving time-stepping methods for time-fractional Allen-Cahn equation , 2019, Advances in Computational Mathematics.