A longitudinal study of Caenorhabditis elegans larvae reveals a novel locomotion switch, regulated by Gαs signaling

Despite their simplicity, longitudinal studies of invertebrate models are rare. We thus sought to characterize behavioral trends of Caenorhabditis elegans, from the mid fourth larval stage through the mid young adult stage. We found that, outside of lethargus, animals exhibited abrupt switching between two distinct behavioral states: active wakefulness and quiet wakefulness. The durations of epochs of active wakefulness exhibited non-Poisson statistics. Increased Gαs signaling stabilized the active wakefulness state before, during and after lethargus. In contrast, decreased Gαs signaling, decreased neuropeptide release, or decreased CREB activity destabilized active wakefulness outside of, but not during, lethargus. Taken together, our findings support a model in which protein kinase A (PKA) stabilizes active wakefulness, at least in part through two of its downstream targets: neuropeptide release and CREB. However, during lethargus, when active wakefulness is strongly suppressed, the native role of PKA signaling in modulating locomotion and quiescence may be minor. DOI: http://dx.doi.org/10.7554/eLife.00782.001

[1]  Marc Montminy,et al.  Transcriptional regulation by the phosphorylation-dependent factor CREB , 2001, Nature Reviews Molecular Cell Biology.

[2]  Michael J. O'Donovan,et al.  A Perimotor Framework Reveals Functional Segmentation in the Motoneuronal Network Controlling Locomotion in Caenorhabditis elegans , 2011, The Journal of Neuroscience.

[3]  A. Pack,et al.  Genetic evidence for a role of CREB in sustained cortical arousal. , 2003, Journal of neurophysiology.

[4]  J. Richmond,et al.  Tomosyn Negatively Regulates CAPS-Dependent Peptide Release at Caenorhabditis elegans Synapses , 2007, The Journal of Neuroscience.

[5]  H. Horvitz,et al.  Cell interactions coordinate the development of the C. elegans egg-laying system , 1990, Cell.

[6]  H. Bringmann,et al.  Reduced muscle contraction and a relaxed posture during sleep-like Lethargus , 2012, Worm.

[7]  H. Bringmann,et al.  Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae , 2011, Journal of Neuroscience Methods.

[8]  Mark J. Alkema,et al.  A Tyramine-Gated Chloride Channel Coordinates Distinct Motor Programs of a Caenorhabditis elegans Escape Response , 2009, Neuron.

[9]  J. Hoogenboom,et al.  Beyond quantum jumps: Blinking nanoscale light emitters , 2009 .

[10]  Stephen E Von Stetina,et al.  The motor circuit. , 2006, International review of neurobiology.

[11]  M. Brauner,et al.  Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin , 2011, Proceedings of the National Academy of Sciences.

[12]  C. Rankin,et al.  Tap withdrawal circuit interneurons require CREB for long-term habituation in Caenorhabditis elegans. , 2011, Behavioral neuroscience.

[13]  G. Nagel,et al.  PACα– an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans , 2011, Journal of neurochemistry.

[14]  J. F. Flanigan Sleep and Wakefulness in Iguanid Lizards, Ctenosaura pectinata and Iguana iguana; pp. 401–416 , 1973 .

[15]  K. Eto,et al.  A CaMK cascade activates CRE‐mediated transcription in neurons of Caenorhabditis elegans , 2002, EMBO reports.

[16]  D. Albertson,et al.  Connectivity changes in a class of motoneurone during the development of a nematode , 1978, Nature.

[17]  Nephi Stella,et al.  Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals , 2009, Nature Methods.

[18]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[19]  E. Marder Neuromodulation of Neuronal Circuits: Back to the Future , 2012, Neuron.

[20]  Benjamin H. White,et al.  Sleep in Drosophila is regulated by adult mushroom bodies , 2006, Nature.

[21]  Jordan H. Boyle,et al.  Gait Modulation in C. Elegans: It's Not a Choice, It's a Reflex! , 2011, Front. Behav. Neurosci..

[22]  Jennifer K Pirri,et al.  The C. elegans Touch Response Facilitates Escape from Predacious Fungi , 2011, Current Biology.

[23]  T. Stankowich Behavior , 2009, The Quarterly Review of Biology.

[24]  R. Sommerville The growth of Cooperia curticei (Giles, 1892), a nematode parasite of sheep , 1960, Parasitology.

[25]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[26]  Aravinthan D. T. Samuel,et al.  Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans , 2010, Proceedings of the National Academy of Sciences.

[27]  Greg J. Stephens,et al.  From Modes to Movement in the Behavior of Caenorhabditis elegans , 2009, PloS one.

[28]  J. Richmond,et al.  Tomosyn negatively regulates both synaptic transmitter and neuropeptide release at the C. elegans neuromuscular junction , 2007, The Journal of physiology.

[29]  A. Sehgal,et al.  A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis , 2001, Nature Neuroscience.

[30]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[31]  P. Franken,et al.  Perchance to dream: solving the mystery of sleep through genetic analysis. , 2003, Journal of neurobiology.

[32]  B. van Swinderen,et al.  A Dynamic Deep Sleep Stage in Drosophila , 2013, The Journal of Neuroscience.

[33]  R. Metzler,et al.  Aging and nonergodicity beyond the Khinchin theorem , 2010, Proceedings of the National Academy of Sciences.

[34]  Borja Perez-Mansilla,et al.  A network of G-protein signaling pathways control neuronal activity in C. elegans. , 2009, Advances in genetics.

[35]  M. Nonet,et al.  Tomosyn Inhibits Synaptic Vesicle Priming in Caenorhabditis elegans , 2006, PLoS biology.

[36]  Qian Ge,et al.  PKA Activation Bypasses the Requirement for UNC-31 in the Docking of Dense Core Vesicles from C. elegans Neurons , 2007, Neuron.

[37]  Han-Sheng Chuang,et al.  Caenorhabditis-in-drop array for monitoring C. elegans quiescent behavior. , 2013, Sleep.

[38]  Tao Xu,et al.  UNC-31/CAPS docks and primes dense core vesicles in C. elegans neurons. , 2010, Biochemical and biophysical research communications.

[39]  David Biron,et al.  The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. , 2013, Sleep.

[40]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[41]  H. Lipkin Where is the ?c? , 1978 .

[42]  K. Miller,et al.  Mutations That Rescue the Paralysis of Caenorhabditis elegans ric-8 (Synembryn) Mutants Activate the Gαs Pathway and Define a Third Major Branch of the Synaptic Signaling Network , 2005, Genetics.

[43]  F. Veglia The anatomy and life-history of Haemonchus contortus (Rud.) , 1915 .

[44]  Nicole K. Charlie,et al.  Presynaptic UNC-31 (CAPS) Is Required to Activate the Gαs Pathway of the Caenorhabditis elegans Synaptic Signaling Network , 2006, Genetics.

[45]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[46]  S. W. Emmons,et al.  Episodic swimming behavior in the nematode C. elegans , 2008, Journal of Experimental Biology.

[47]  K. Miller,et al.  Convergent, RIC-8-Dependent Gα Signaling Pathways in the Caenorhabditis elegans Synaptic Signaling Network , 2005, Genetics.

[48]  David M. Raizen,et al.  Lethargus is a Caenorhabditis elegans sleep-like state , 2008, Nature.

[49]  E. Jorgensen,et al.  UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle Exocytosis in Caenorhabditis elegans , 2007, The Journal of Neuroscience.

[50]  P. Sengupta,et al.  Regulation of Body Size and Behavioral State of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase , 2002, Neuron.

[51]  Aravinthan D. T. Samuel,et al.  Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion , 2012, Neuron.

[52]  Qiang Liu,et al.  UNC-1 Regulates Gap Junctions Important to Locomotion in C. elegans , 2007, Current Biology.

[53]  C. Murphy,et al.  Insulin Signaling and Dietary Restriction Differentially Influence the Decline of Learning and Memory with Age , 2010, PLoS biology.

[54]  Christopher J. Cronin,et al.  Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. , 2006, Journal of theoretical biology.

[55]  Y. Takai,et al.  PKA-catalyzed phosphorylation of tomosyn and its implication in Ca2+-dependent exocytosis of neurotransmitter , 2005, The Journal of cell biology.

[56]  Greg J. Stephens,et al.  Dimensionality and Dynamics in the Behavior of C. elegans , 2007, PLoS Comput. Biol..

[57]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  S. Lockery,et al.  C. elegans Notch Signaling Regulates Adult Chemosensory Response and Larval Molting Quiescence , 2011, Current Biology.

[59]  Yoav Benjamini,et al.  Measuring behavior of animal models: faults and remedies , 2012, Nature Methods.

[60]  J. Sulston,et al.  Some Observations On Moulting in Caenorhabditis Elegans , 1978 .

[61]  Wagner Steuer Costa,et al.  Keeping track of worm trackers. , 2012, WormBook : the online review of C. elegans biology.

[62]  S. M. Coulthard,et al.  Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. , 2008, Journal of Neurophysiology.

[63]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[64]  Laura J. Grundy,et al.  A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion , 2012, Proceedings of the National Academy of Sciences.

[65]  J. Bessereau,et al.  [C. elegans: of neurons and genes]. , 2003, Medecine sciences : M/S.

[66]  J. Sulston Post-embryonic development in the ventral cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[67]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  Y. Ruckebusch The relevance of drowsiness in the circadian cycle of farm animals. , 1972, Animal behaviour.

[69]  W. F. Flanigan,et al.  Sleep and wakefulness in iguanid lizards, Ctenosaura pectinata and Iguana iguana. , 1973, Brain, behavior and evolution.

[70]  A. Frand,et al.  LIN-42/PERIOD Controls Cyclical and Developmental Progression of C. elegans Molts , 2011, Current Biology.

[71]  I. Mori,et al.  Identification of the AFD neuron as the site of action of the CREB protein in Caenorhabditis elegans thermotaxis , 2011, EMBO reports.

[72]  W. Bialek,et al.  Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[73]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[74]  C. Jacobs-Wagner,et al.  Physical Nature of the Bacterial Cytoplasm , 2014 .

[75]  Scott S. Campbell,et al.  Animal sleep: A review of sleep duration across phylogeny , 1984, Neuroscience & Biobehavioral Reviews.