Extension of the Kubelka-Munk theory to an arbitrary substrate: a Monte Carlo approach.

In this work we review and-to some extent-upgrade one of the main theories of light flux through homogeneous isotropic media, namely, the Kubelka-Munk (K-M) theory, and in particular the later expansion made by Kubelka to obtain the reflectance of a specimen when a substrate lies underneath. We have completed this solution by calculating the transverse energy density in the specimen and the transmission of the whole. We show that this last result-compatible with Kubelka's upgrade for layered media-also allows for the calculation of the specimen/substrate absorption split. In order to validate these expressions, the results were reproduced by means of a Monte Carlo simulation working on a layered medium under the same assumptions as the K-M theory. Interestingly, the numerical procedure introduces new capabilities in the model regarding the history of any absorbed or outgoing elemental light beam, such as the recording of its time-of-flight through a given system.

[1]  J. Nobbs Kubelka—Munk Theory and the Prediction of Reflectance , 2008 .

[2]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[3]  S. Mestre,et al.  Utilización de la teoría de Kubelka-Munk para optimizar el reciclado de residuos crudos de gres porcelánico , 2002 .

[4]  L. F. C. Friele,et al.  THE APPLICATION OF COLOUR MEASUREMENT IN RELATION TO FIBRE-BLENDING , 1952 .

[5]  S. Marschner,et al.  Measuring and modeling the appearance of finished wood , 2005, SIGGRAPH 2005.

[6]  J. L. Saunderson Calculation of the Color of Pigmented Plastics , 1942 .

[7]  A. Murphy Modified Kubelka–Munk model for calculation of the reflectance of coatings with optically-rough surfaces , 2006 .

[8]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[9]  J. D. Kerf,et al.  Light Diffusion in Photographic Layers: Its Influence on Sensitivity and Modulation Transfer* , 1965 .

[10]  T. Shakespeare,et al.  A fluorescent extension to the Kubelka–Munk model , 2003 .

[11]  Daniel Dupont,et al.  Bibliographical review for reflectance of diffusing media , 2001 .

[12]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[13]  P. Kubelka,et al.  New contributions to the optics of intensely light-scattering materials. , 1954, Journal of the Optical Society of America.

[14]  Henry R. Kang Applications of color mixing models to electronic printing , 1994, J. Electronic Imaging.

[15]  Leonid Fukshansky,et al.  Extension of the Kubelka–Munk theory of light propagation in intensely scattering materials to fluorescent media , 1980 .

[16]  A. Schuster Radiation through a foggy atmosphere , 1903 .