Rheology of Solar-Salt based nanofluids for concentrated solar power. Influence of the salt purity, nanoparticle concentration, temperature and rheometer geometry

[1]  Robert A. Taylor,et al.  Annual comparative performance and cost analysis of high temperature, sensible thermal energy storage systems integrated with a concentrated solar power plant , 2017 .

[2]  J. Kenny,et al.  Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature , 2017 .

[3]  Alexander W. Dowling,et al.  Economic assessment of concentrated solar power technologies: A review , 2017 .

[4]  Li Ying,et al.  Novel low melting point binary nitrates for thermal energy storage applications , 2017 .

[5]  Ying Li,et al.  Improving the thermal properties of NaNO3-KNO3 for concentrating solar power by adding additives , 2017 .

[6]  P. Zhang,et al.  Accurate viscosity measurement of nitrates/nitrites salts for concentrated solar power , 2016 .

[7]  Robert A. Taylor,et al.  Specific heat control of nanofluids: A critical review , 2016 .

[8]  Marie-Aline Van Ende,et al.  FactSage thermochemical software and databases, 2010–2016 , 2016 .

[9]  J. A. Sánchez-García,et al.  The influence of mixing water on the thermophysical properties of nanofluids based on solar salt and silica nanoparticles , 2016 .

[10]  J. A. Sánchez-García,et al.  Preparation of nanofluids based on solar salt and boehmite nanoparticles: Characterization of starting materials , 2016 .

[11]  S. Licoccia,et al.  Techno-economic comparison between CSP plants presenting two different heat transfer fluids , 2016 .

[12]  K. Bashirnezhad,et al.  Viscosity of nanofluids: A review of recent experimental studies , 2016 .

[13]  M. A. Karim,et al.  An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications , 2016 .

[14]  D. Banerjee,et al.  Effect of formation of “long range” secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity , 2015 .

[15]  Yulong Ding,et al.  Rheological Analysis of Binary Eutectic Mixture of Sodium and Potassium Nitrate and the Effect of Low Concentration CuO Nanoparticle Addition to Its Viscosity , 2015, Materials.

[16]  T. Bauer,et al.  Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage , 2015, Beilstein journal of nanotechnology.

[17]  R. Martinez-Cuenca,et al.  Increment of specific heat capacity of solar salt with SiO2 nanoparticles , 2014, Nanoscale Research Letters.

[18]  R. Saidur,et al.  A comparative review on the specific heat of nanofluids for energy perspective , 2014 .

[19]  Chong-fang Ma,et al.  Preparation and thermal properties of quaternary mixed nitrate with low melting point , 2014 .

[20]  D. Banerjee,et al.  Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic , 2014 .

[21]  Mathieu Lasfargues Nitrate based high temperature nano-heat-transfer-fluids : formulation & characterisation , 2014 .

[22]  Chong-fang Ma,et al.  Improving the thermal properties of ternary carbonates for concentrating solar power through simple chemical modifications by adding sodium hydroxide and nitrate , 2014 .

[23]  D. Banerjee,et al.  Viscosity measurements of multi-walled carbon nanotubes-based high temperature nanofluids , 2014 .

[24]  J. Kenny,et al.  Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage , 2013, Nanoscale Research Letters.

[25]  R. Serrano-L'opez,et al.  Molten salts database for energy applications , 2013, 1307.7343.

[26]  H. Ahmadzadeh,et al.  NANOFLUIDS FOR HEAT TRANSFER ENHANCEMENT-A REVIEW , 2013 .

[27]  M. Romero,et al.  Concentrating solar thermal power and thermochemical fuels , 2012 .

[28]  S. Jung Numerical and Experimental Investigation of Inorganic Nanomaterials for Thermal Energy Storage (TES) and Concentrated Solar Power (CSP) Applications , 2012 .

[29]  Ivan Biaggio,et al.  1,1‐Dicyano‐4‐[4‐(diethylamino)phenyl]buta‐1,3‐dienes: Structure–Property Relationships , 2012 .

[30]  Changying Zhao,et al.  Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems , 2011 .

[31]  D. Banerjee,et al.  Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications , 2011 .

[32]  Tharwat F. Tadros,et al.  Rheology of Dispersions: Principles and Applications , 2010 .

[33]  A. Sari,et al.  Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage , 2009 .

[34]  R. P. Chhabra,et al.  Non-Newtonian Flow and Applied Rheology: Engineering Applications , 2008 .

[35]  Xuejun Zhang,et al.  Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system , 2003 .

[36]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[37]  G. Janz,et al.  Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures: Electrical Conductance, Density, Viscosity, and Surface Tension Data , 1972 .

[38]  Ş. Zuca,et al.  VISCOSITY OF BINARY MIXTURES OF MOLTEN NITRATES AS A FUNCTION OF IONIC RADIUS-II* , 1969 .

[39]  María Isabel Roldán Serrano Concentrating Solar Thermal Technologies , 2017 .

[40]  P. Estellé Comment on “viscosity measurements of multi-walled carbon nanotubes-based high temperature nanofluids” , 2015 .

[41]  A. Smits,et al.  Errors in parallel-plate and cone-plate rheometer measurements due to sample underfill , 2014 .