Node-based learning of differential networks from multi-platform gene expression data.

[1]  M. Bernard,et al.  BMP7 Expression Correlates with Secondary Drug Resistance in Mantle Cell Lymphoma , 2013, PloS one.

[2]  Quaid Morris,et al.  PLIDA: cross-platform gene expression normalization using perturbed topic models , 2014, Bioinform..

[3]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[4]  V. Beral,et al.  Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer , 2015, Nature Reviews Cancer.

[5]  N. Eckstein,et al.  Platinum resistance in breast and ovarian cancer cell lines , 2011, Journal of experimental & clinical cancer research : CR.

[6]  A. Sood,et al.  Targeting c-MYC in Platinum-Resistant Ovarian Cancer , 2015, Molecular Cancer Therapeutics.

[7]  B. Frey,et al.  Network cleanup , 2013, Nature Biotechnology.

[8]  Su-In Lee,et al.  Learning graphical models with hubs , 2014, J. Mach. Learn. Res..

[9]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[10]  Su-In Lee,et al.  Node-based learning of multiple Gaussian graphical models , 2013, J. Mach. Learn. Res..

[11]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[12]  Yufeng Liu,et al.  Joint estimation of multiple precision matrices with common structures , 2015, J. Mach. Learn. Res..

[13]  Andrew H. Beck,et al.  EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes , 2015, Bioinform..

[14]  D. Sabatini mTOR and cancer: insights into a complex relationship , 2006, Nature Reviews Cancer.

[15]  Xing-Ming Zhao,et al.  Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information , 2012, Bioinform..

[16]  R. Bernards,et al.  TGF-β: An emerging player in drug resistance , 2013, Cell cycle.

[17]  Xingming Zhao,et al.  Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks , 2014, Nucleic acids research.

[18]  Yingying Lu,et al.  Inhibition of telomerase activity by HDV ribozyme in cancers , 2011, Journal of experimental & clinical cancer research : CR.

[19]  Xiangxiang Zeng,et al.  Inferring MicroRNA-Disease Associations by Random Walk on a Heterogeneous Network with Multiple Data Sources , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[20]  Kun-Liang Guan,et al.  Dysregulation of the TSC-mTOR pathway in human disease , 2004, Nature Genetics.

[21]  S. Chow,et al.  Overexpression of cyclin D1 and c-Myc gene products in human primary epithelial ovarian cancer , 2004, International Journal of Gynecologic Cancer.

[22]  E. Levina,et al.  Joint estimation of multiple graphical models. , 2011, Biometrika.

[23]  Trupti Joshi,et al.  Inferring gene regulatory networks from multiple microarray datasets , 2006, Bioinform..

[24]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[25]  Riet De Smet,et al.  Advantages and limitations of current network inference methods , 2010, Nature Reviews Microbiology.

[26]  Tzu-Hao Chang,et al.  COL11A1 confers chemoresistance on ovarian cancer cells through the activation of Akt/c/EBPβ pathway and PDK1 stabilization , 2015, Oncotarget.

[27]  H. Burris,et al.  Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway , 2013, Cancer Chemotherapy and Pharmacology.

[28]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[29]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[30]  M. Dietel,et al.  PDK1 is Expressed in Ovarian Serous Carcinoma and Correlates with Improved Survival in High-grade Tumors. , 2015, Anticancer research.

[31]  Ralf Zimmer,et al.  Inferring gene regulatory networks by ANOVA , 2012, Bioinform..

[32]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[33]  Peng Yang,et al.  Detecting temporal protein complexes from dynamic protein-protein interaction networks , 2014, BMC Bioinformatics.

[34]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[35]  R. Tibshirani,et al.  A note on the group lasso and a sparse group lasso , 2010, 1001.0736.

[36]  D. Soprano,et al.  Insulin receptor substrate-1 is an important mediator of ovarian cancer cell growth suppression by all-trans retinoic acid. , 2007, Cancer research.

[37]  Luonan Chen,et al.  Part mutual information for quantifying direct associations in networks , 2016, Proceedings of the National Academy of Sciences.

[38]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[39]  Lin Yuan,et al.  Gene differential coexpression analysis based on biweight correlation and maximum clique , 2014, BMC Bioinformatics.

[40]  Patrick Danaher,et al.  The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[41]  B. Kholodenko,et al.  The dynamic control of signal transduction networks in cancer cells , 2015, Nature Reviews Cancer.

[42]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[43]  Joanna H Shih,et al.  Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways , 2004, Oncogene.

[44]  K. Aihara,et al.  Personalized characterization of diseases using sample-specific networks , 2016, bioRxiv.