The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies

Through a Lens Brightly Astronomical sources detected in the submillimeter range are generally thought to be distant, dusty galaxies undergoing a vigorous burst of star formation. They can be detected because the dust absorbs the light from stars and reemits it at longer wavelengths. Their properties are still difficult to ascertain, however, because the combination of interference from dust and the low spatial resolution of submillimeter telescopes prevents further study at other wavelengths. Using data from the Herschel Space Telescope, Negrello et al. (p. 800) showed that by searching for the brightest sources in a wide enough area in the sky it was possible to detect gravitationally lensed submillimeter galaxies with nearly full efficiency. Gravitational lensing occurs when the light of an astronomical object is deflected by a foreground mass. This phenomenon increases the apparent brightness and angular size of the lensed objects, making it easier to study sources that would be otherwise too faint to probe. Data from the Herschel Space Observatory unveils distant, dusty galaxies invisible to optical telescopes. Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

[1]  S. Maddox,et al.  Herschel-ATLAS: Blazars in the science demonstration phase field , 2010, Astronomy and Astrophysics.

[2]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[3]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[4]  S. Maddox,et al.  Herschel-ATLAS: The angular correlation function of submillimetre galaxies at high and low redshift , 2010, 1005.2406.

[5]  S. Maddox,et al.  Herschel-ATLAS: The dust energy balance in the edge-on spiral galaxy UGC 4754 , 2010, 1005.1773.

[6]  S. Maddox,et al.  Herschel-ATLAS: Extragalactic number counts from 250 to 500 microns , 2010, 1005.2409.

[7]  Harvard,et al.  Intense star formation within resolved compact regions in a galaxy at z = 2.3 , 2010, Nature.

[8]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[9]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[10]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES , 2009, 0911.2471.

[11]  H. Rix,et al.  THE LARGE APEX BOLOMETER CAMERA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2009, 0910.2821.

[12]  F. Walter,et al.  FIRST REDSHIFT DETERMINATION OF AN OPTICALLY/ULTRAVIOLET FAINT SUBMILLIMETER GALAXY USING CO EMISSION LINES , 2009, 0909.3177.

[13]  R. Aikin,et al.  THE WARM MOLECULAR GAS AROUND THE CLOVERLEAF QUASAR , 2009, 0908.1818.

[14]  Itziar Aretxaga,et al.  Over half of the far-infrared background light comes from galaxies at z ≥ 1.2 , 2009, Nature.

[15]  D. Elbaz,et al.  A CO EMISSION LINE FROM THE OPTICAL AND NEAR-IR UNDETECTED SUBMILLIMETER GALAXY GN10 , 2009, 0903.3046.

[16]  A. M. Swinbank,et al.  The formation and assembly of a typical star-forming galaxy at redshift z ≈ 3 , 2008, Nature.

[17]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[18]  Y. Mellier,et al.  First Catalog of Strong Lens Candidates in the COSMOS Field , 2008, 0802.2174.

[19]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[20]  A. Bolton,et al.  Superresolving Distant Galaxies with Gravitational Telescopes: Keck Laser Guide Star Adaptive Optics and Hubble Space Telescope Imaging of the Lens System SDSS J0737+3216 , 2007, 0710.0637.

[21]  C. Baccigalupi,et al.  Astrophysical and cosmological information from large-scale submillimetre surveys of extragalactic sources , 2007, astro-ph/0703210.

[22]  Andrew J. Baker,et al.  From Z-machines to ALMA : (sub) millimeter spectroscopy of galaxies : proceedings of a workshop held at the North American ALMA Science Center of the National Radio Astronomy Observatory in Charlottesville, Virginia, United States, 12-14 January 2006 , 2007 .

[23]  W. Percival,et al.  The SCUBA half-degree extragalactic survey - II. Submillimetre maps, catalogue and number counts , 2006, astro-ph/0609039.

[24]  J. Brinkmann,et al.  The Sloan Digital Sky Survey Quasar Lens Search. I. Candidate Selection Algorithm , 2006, astro-ph/0605571.

[25]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[26]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[27]  D. Mesa,et al.  Predictions for high-frequency radio surveys of extragalactic sources , 2004, astro-ph/0410709.

[28]  S. Serjeant,et al.  The local submillimetre luminosity functions and predictions from Spitzer to Herschel , 2004, astro-ph/0409498.

[29]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[30]  S. Serjeant,et al.  The Local sub-mm luminosity functions and predictions from Spitzer to Herschel , 2004 .

[31]  M. Jarvis,et al.  Near-infrared imaging and the K—z relation for radio galaxies in the 7C Redshift Survey , 2002, astro-ph/0209439.

[32]  Edinburgh,et al.  Breaking the ‘redshift deadlock’– II. The redshift distribution for the submillimetre population of galaxies , 2002, astro-ph/0205313.

[33]  C. Baccigalupi,et al.  Predictions for statistical properties of forming spheroidal galaxies , 2003 .

[34]  C. Baccigalupi,et al.  Gravitational lensing of extended high-redshift sources by dark matter haloes , 2002 .

[35]  M. Halpern,et al.  Breaking the ‘redshift deadlock’– I. Constraining the star formation history of galaxies with submillimetre photometric redshifts , 2001, astro-ph/0111547.

[36]  J.-P.Kneib,et al.  The nature of faint submillimetre-selected galaxies , 2001, astro-ph/0112100.

[37]  J. Ashby References and Notes , 1999 .

[38]  Jean-Paul Kneib,et al.  Deep Counts of Submillimeter Galaxies , 1998, astro-ph/9812412.

[39]  Jia-Sheng Huang,et al.  Morphological Classification of the Local I- and K-Band Galaxy Sample , 1998 .

[40]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[41]  David G. Vass,et al.  Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) , 1997 .

[42]  A. Blain Galaxy—galaxy gravitational lensing in the millimetre/submillimetre waveband , 1996 .

[43]  D. Gudehus Systematic Bias in Cluster Galaxy Data, Affecting Galaxy Distances and Evolutionary History , 1991 .

[44]  M. Rowan-Robinson,et al.  A high-redshift IRAS galaxy with huge luminosity—hidden quasar or protogalaxy? , 1991, Nature.

[45]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .