A phase-field model of solidification with convection

We develop a phase-field model for the solidification of a pure material that includes convection in the liquid phase. The model permits the interface to have an anisotropic surface energy, and allows a quasi-incompressible thermodynamic description in which the densities in the solid and liquid phases may each be uniform. The solid phase is modeled as an extremely viscous liquid, and the formalism of irreversible thermodynamics is employed to derive the governing equations. We investigate the behavior of our model in two important simple situations corresponding to the solidification of a planar interface at constant velocity: density change flow and a shear flow. In the former case we obtain a non-equilibrium form of the Clausius–Clapeyron equation and investigate its behavior by both a direct numerical integration of the governing equations, and an asymptotic analysis corresponding to a small density difference between the two phases. In the case of a parallel shear flow we are able to obtain an exact solution which allows us to investigate its behavior in the sharp interface limit, and for large values of the viscosity ratio.

[1]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[2]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[3]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions , 1972 .

[4]  John W. Cahn,et al.  Diffuse interfaces with sharp corners and facets: phase field models with strongly anisotropic surfaces , 1998 .

[5]  Geoffrey B. McFadden,et al.  Solute trapping and solute drag in a phase-field model of rapid solidification , 1998 .

[6]  G. B. McFadden,et al.  On the notion of a ξ–vector and a stress tensor for a general class of anisotropic diffuse interface models , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[8]  Wheeler,et al.  Phase-field models for anisotropic interfaces. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  G. Caginalp Surface tension and supercooling in solidification theory , 1985 .

[10]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[11]  J. Langer Models of Pattern Formation in First-Order Phase Transitions , 1986 .

[12]  Geoffrey B. McFadden,et al.  A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics , 1996, European Journal of Applied Mathematics.

[13]  Sam R. Coriell,et al.  Convective and interfacial instabilities during unidirectional solidification of a binary alloy , 1980 .

[14]  J. Hunt,et al.  Thermoelectric investigation of solidification of lead I. Pure lead , 1991 .

[15]  A. Umantsev Thermodynamic stability of phases and transition kinetics under adiabatic conditions , 1992 .

[16]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[17]  J. Cahn,et al.  A Microscopic Theory for Domain Wall Motion and Its Experimental Verification in Fe‐Al Alloy Domain Growth Kinetics , 1977 .

[18]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[19]  J. W. Humberston Classical mechanics , 1980, Nature.

[20]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[21]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[22]  Gustav Amberg,et al.  Phase-field simulation of dendritic growth in a shear flow , 1998 .

[23]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[24]  H. Brenner,et al.  A micromechanical investigation of interfacial transport processes. I. Interfacial conservation equations , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[25]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[26]  J. W. Gibbs,et al.  Scientific Papers , 1997, Nature.

[27]  H. Müller-Krumbhaar,et al.  THEORY OF DENDRITIC GROWTH—I. ELEMENTS OF A STABILITY ANALYSIS , 1978 .

[28]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[29]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Robert F. Sekerka,et al.  Algorithms for phase eld computation of the dentritic operating state at large supercoolings , 1996 .

[31]  M. Gurtin,et al.  On the evolution of phase boundaries , 1992 .

[32]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[33]  C. Charach,et al.  On Thermodynamically Consistent Schemes for Phase Field Equations , 1998 .

[34]  T. Sawada,et al.  Optical study of roughening transition on ice Ih (101̄0) planes under pressure , 1997 .

[35]  A derivation of a phase field model with fluid properties , 1991 .

[36]  R. Sec.,et al.  XX. On the theory of surface forces.—II. Compressible fluids , 1892 .

[37]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[38]  P. G. de Gennes,et al.  Short Range Order Effects in the Isotropic Phase of Nematics and Cholesterics , 1971 .

[39]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[40]  S. D. Poisson,et al.  Nouvelle théorie de l'action capillaire. , 1831 .

[41]  J. Beech,et al.  Solidification processing 1997 , 1997 .

[42]  G. B. McFadden,et al.  Anisotropy of interfaces in an ordered alloy: a multiple–order–parameter model , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[44]  C. Lupis Chemical thermodynamics of materials , 1983 .

[45]  L. Garrido,et al.  Applications of Field Theory to Statistical Mechanics , 1985 .

[46]  J. Lendvai,et al.  Correlation between resistivity increment and volume fraction of G.P. zones in an Al-3·2 wt % Zn-2·2 wt % Mg alloy , 1976 .

[47]  G. Caginalp,et al.  Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. , 1989, Physical review. A, General physics.

[48]  Fife,et al.  Phase-field methods for interfacial boundaries. , 1986, Physical review. B, Condensed matter.

[49]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[50]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[51]  Antonio Fasano,et al.  Free boundary problems : theory and applications , 1983 .

[52]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[53]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[54]  M. Glicksman,et al.  The Clapeyron effect in succinonitrile: applications to crystal growth , 1998 .

[55]  Collins,et al.  Diffuse interface model of diffusion-limited crystal growth. , 1985, Physical review. B, Condensed matter.

[56]  J. Taylor,et al.  II—mean curvature and weighted mean curvature , 1992 .