Eye localization: a survey

In this survey we first discuss the importance of eye localization as the initialization step for many face processing techniques, then we further show the influence of the localization precision on the rate achieved by some baseline face recognition techniques. To do so, we give the definition of the objective error measures already known in literature. A brief review of some state-of-the-art eye localization methods is subsequently given, focusing on those articles that tackle the problem of precise localization and that use some objective criterion for performance evaluation. Finally their localization results are compared on a number of different datasets.

[1]  Paola Campadelli,et al.  Precise Eye Localization through a General-to-specific Model Definition , 2006, BMVC.

[2]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[3]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[4]  Wen Gao,et al.  Curse of mis-alignment in face recognition: problem and a novel mis-alignment learning solution , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[5]  Wen Gao,et al.  2D Cascaded AdaBoost for Eye Localization , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[6]  Timothy F. Cootes,et al.  Feature Detection and Tracking with Constrained Local Models , 2006, BMVC.

[7]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[8]  Ning Wang,et al.  Robust precise eye location under probabilistic framework , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[9]  Pengfei Zhao,et al.  Robust Precise Eye Location by Adaboost and SVM Techniques , 2005, ISNN.

[10]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Qiang Ji,et al.  Automatic Eye Detection and Its Validation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[12]  Bruce A. Draper,et al.  How features of the human face affect recognition: a statistical comparison of three face recognition algorithms , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Paola Campadelli,et al.  A face recognition system based on automatically determined facial fiducial points , 2006, Pattern Recognit..

[14]  Patrick J. Flynn,et al.  Eye Perturbation Approach for Robust Recognition of Inaccurately Aligned Faces , 2005, AVBPA.

[15]  Jiri Matas,et al.  Feature-based affine-invariant localization of faces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Zhi-Hua Zhou,et al.  Projection functions for eye detection , 2004, Pattern Recognit..

[17]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  Samy Bengio,et al.  Measuring the performance of face localization systems , 2006, Image Vis. Comput..

[20]  Patrick J. Flynn,et al.  An evaluation of multimodal 2D+3D face biometrics , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[22]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System: Its Purpose, Features, and Structure , 2003, ICVS.

[24]  Ian R. Fasel,et al.  A generative framework for real time object detection and classification , 2005, Comput. Vis. Image Underst..

[25]  Andrew Zisserman,et al.  Regression and classification approaches to eye localization in face images , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[26]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[27]  Chengjun Liu,et al.  Gabor-based kernel PCA with fractional power polynomial models for face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Paola Campadelli,et al.  Face localization in color images with complex background , 2005, Seventh International Workshop on Computer Architecture for Machine Perception (CAMP'05).

[29]  P. N. Bellhumer Eigenfaces vs. fisherfaces : Recognition using class specific linear projection , 1997 .

[30]  Sami Romdhani,et al.  Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Raffaella Lanzarotti UNIVERSIT ` A DEGLI STUDI DI MILANO Facolta di Scienze Matematiche, Fisiche e Naturali Dottorato in Informatica XVI ciclo FACIAL FEATURE DETECTION AND DESCRIPTION , 2003 .

[32]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System , 2005, Machine Vision and Applications.

[33]  R. Tibshirani,et al.  Additive Logistic Regression : a Statistical View ofBoostingJerome , 1998 .

[34]  P. Phillips,et al.  How features of the human face affect recognition: a statistical comparison of three face recognition algorithms , 2004, CVPR 2004.

[35]  Klaus J. Kirchberg,et al.  Robust Face Detection Using the Hausdorff Distance , 2001, AVBPA.