Iterative clustering based active learning for hyperspectral image classification

In this paper, a novel iterative clustering based active learning (ICAL) method for hyperspectral image classification is proposed. On the one hand, the extreme learning machine is combined with the Markov random field (ELM-MRF) for label assignment, to exploit both spectral and spatial information to boost classification result. On the other hand, an iterative clustering based sample selection strategy is introduced to optimally choose the most informative training sample set. This strategy first selects a candidate set of samples, according to the differential map that is obtained by comparing the ELM-MRF based classification results in adjacent iterations. Then, all the pixels in the candidate set are clustered according to spectral characteristics. Finally, from each cluster, the one sample with the highest uncertainty is added to the new training sample set. By this sample selection strategy, the diversity and uncertainty of training samples can be maximized, which can further contribute to the improvement of classification performance. Experimental results show that the proposed ICAL method can achieve competitive classification results even with a limited number of labeled samples.

[1]  Mikhail F. Kanevski,et al.  A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification , 2011, IEEE Journal of Selected Topics in Signal Processing.

[2]  Antonio J. Plaza,et al.  Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Lawrence Carin,et al.  Semi-Supervised Classification , 2004, Encyclopedia of Database Systems.

[5]  Jon Atli Benediktsson,et al.  Hyperspectral Image Classification Via Shape-Adaptive Joint Sparse Representation , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  Jon Atli Benediktsson,et al.  Probabilistic Fusion of Pixel-Level and Superpixel-Level Hyperspectral Image Classification , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Chen Chen,et al.  Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine , 2014, Remote. Sens..