Convergence rates for nonequilibrium Langevin dynamics

We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresponding respectively to frictions going to zero or infinity) are carefully investigated. In particular, the maximal magnitude of admissible perturbations are quantified as a function of the friction. Numerical results based on a Galerkin discretization of the generator of the dynamics confirm the theoretical lower bounds on the spectral gap.RésuméNous considérons la convergence exponentielle vers l’état stationnaire pour des dynamiques de Langevin hors d’équilibre, par une approche perturbative reposant sur des techniques d’hypocoercivité initialement développées pour des dynamiques d’équilibre. Les limites hamiltoniennes et suramorties (qui correspondent respectivement au cas des frictions tendant vers zéro ou l’infini) sont étudiées précisément. En particulier, nous quantifions la magnitude maximale des perturbations admissibles en fonction de la friction. Des simulations numériques utilisant une discrétisation de Galerkin du générateur de la dynamique confirment les bornes inférieures que nous obtenons théoriquement pour le trou spectral.

[1]  F. Chaitin-Chatelin Spectral approximation of linear operators , 1983 .

[2]  R. Lathe Phd by thesis , 1988, Nature.

[3]  Hermann Rodenhausen,et al.  Einstein's relation between diffusion constant and mobility for a diffusion model , 1989 .

[4]  Effective diffusion in the Fokker-Planck equation , 1989 .

[5]  M. Hairer,et al.  Spectral Properties of Hypoelliptic Operators , 2002 .

[6]  D. Talay Stochastic Hamiltonian Systems : Exponential Convergence to the Invariant Measure , and Discretization by the Implicit Euler Scheme , 2002 .

[7]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[8]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[9]  Luc Rey-Bellet,et al.  Ergodic properties of Markov processes , 2006 .

[10]  Ivan Gentil,et al.  Phi-entropy inequalities for diffusion semigroups , 2008, 0812.0800.

[11]  Martin Hairer,et al.  From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.

[12]  C. Mouhot,et al.  Hypocoercivity for kinetic equations with linear relaxation terms , 2008, 0810.3493.

[13]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[14]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[15]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[16]  F. Chatelin Spectral approximation of linear operators , 2011 .

[17]  Axel Klar,et al.  Exponential Rate of Convergence to Equilibrium for a Model Describing Fiber Lay-Down Processes , 2012, 1201.2156.

[18]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[19]  Fabrice Baudoin,et al.  Bakry-Emery meet Villani , 2013, 1308.4938.

[20]  G. A. Pavliotis,et al.  Corrections to Einstein’s Relation for Brownian Motion in a Tilted Periodic Potential , 2013 .

[21]  B. Leimkuhler,et al.  Molecular Dynamics: With Deterministic and Stochastic Numerical Methods , 2015 .

[22]  Stefano Olla,et al.  Non-equilibrium isothermal transformations in a temperature gradient from a microscopic dynamics , 2015 .

[23]  B. Leimkuhler,et al.  The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.

[24]  Anton Arnold,et al.  Large-time behavior in non-symmetric Fokker-Planck equations , 2015, 1506.02470.

[25]  S. Redon,et al.  Error Analysis of Modified Langevin Dynamics , 2016, 1601.07411.

[26]  Gabriel Stoltz,et al.  Partial differential equations and stochastic methods in molecular dynamics* , 2016, Acta Numerica.

[27]  Fabrice Baudoin Wasserstein contraction properties for hypoelliptic diffusions , 2016, 1602.04177.

[28]  Franca Hoffmann,et al.  Exponential Decay to Equilibrium for a Fiber Lay-Down Process on a Moving Conveyor Belt , 2016, SIAM J. Math. Anal..

[29]  G. Stoltz,et al.  Spectral methods for Langevin dynamics and associated error estimates , 2017, 1702.04718.

[30]  CH' , 2018, Dictionary of Upriver Halkomelem.

[31]  A. Eberle,et al.  Couplings and quantitative contraction rates for Langevin dynamics , 2017, The Annals of Probability.