Convergence rates for nonequilibrium Langevin dynamics
暂无分享,去创建一个
[1] F. Chaitin-Chatelin. Spectral approximation of linear operators , 1983 .
[2] R. Lathe. Phd by thesis , 1988, Nature.
[3] Hermann Rodenhausen,et al. Einstein's relation between diffusion constant and mobility for a diffusion model , 1989 .
[4] Effective diffusion in the Fokker-Planck equation , 1989 .
[5] M. Hairer,et al. Spectral Properties of Hypoelliptic Operators , 2002 .
[6] D. Talay. Stochastic Hamiltonian Systems : Exponential Convergence to the Invariant Measure , and Discretization by the Implicit Euler Scheme , 2002 .
[7] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .
[8] F. Hérau,et al. Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .
[9] Luc Rey-Bellet,et al. Ergodic properties of Markov processes , 2006 .
[10] Ivan Gentil,et al. Phi-entropy inequalities for diffusion semigroups , 2008, 0812.0800.
[11] Martin Hairer,et al. From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.
[12] C. Mouhot,et al. Hypocoercivity for kinetic equations with linear relaxation terms , 2008, 0810.3493.
[13] C. Mouhot,et al. HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.
[14] S. Sharma,et al. The Fokker-Planck Equation , 2010 .
[15] T. Lelièvre,et al. Free Energy Computations: A Mathematical Perspective , 2010 .
[16] F. Chatelin. Spectral approximation of linear operators , 2011 .
[17] Axel Klar,et al. Exponential Rate of Convergence to Equilibrium for a Model Describing Fiber Lay-Down Processes , 2012, 1201.2156.
[18] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[19] Fabrice Baudoin,et al. Bakry-Emery meet Villani , 2013, 1308.4938.
[20] G. A. Pavliotis,et al. Corrections to Einstein’s Relation for Brownian Motion in a Tilted Periodic Potential , 2013 .
[21] B. Leimkuhler,et al. Molecular Dynamics: With Deterministic and Stochastic Numerical Methods , 2015 .
[22] Stefano Olla,et al. Non-equilibrium isothermal transformations in a temperature gradient from a microscopic dynamics , 2015 .
[23] B. Leimkuhler,et al. The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.
[24] Anton Arnold,et al. Large-time behavior in non-symmetric Fokker-Planck equations , 2015, 1506.02470.
[25] S. Redon,et al. Error Analysis of Modified Langevin Dynamics , 2016, 1601.07411.
[26] Gabriel Stoltz,et al. Partial differential equations and stochastic methods in molecular dynamics* , 2016, Acta Numerica.
[27] Fabrice Baudoin. Wasserstein contraction properties for hypoelliptic diffusions , 2016, 1602.04177.
[28] Franca Hoffmann,et al. Exponential Decay to Equilibrium for a Fiber Lay-Down Process on a Moving Conveyor Belt , 2016, SIAM J. Math. Anal..
[29] G. Stoltz,et al. Spectral methods for Langevin dynamics and associated error estimates , 2017, 1702.04718.
[30] CH' , 2018, Dictionary of Upriver Halkomelem.
[31] A. Eberle,et al. Couplings and quantitative contraction rates for Langevin dynamics , 2017, The Annals of Probability.